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FOREWORD

The integration of mathematics and science can provide a broad
base of relevant experience to promote meaningful learning. Such
learning, coupled with opportunities for application of mathematics
and science, facilitates generalization of concepts and processes as
they are encountered in the environment.

The School Science and Mathematics Association seeks to im-
prove the teaching and learning of mathematics and science and to
promote the integration and interrelationships among these disci-
plines. SSMA, therefore, has as its goals:

1.
2.

To identify and explicate interrelationships between mathe-
matics and science.

To facilitate the teaching of science and mathematics in for-
mal and informal settings in a manner that reflects the interre-
latedness of the disciplines.

To inform mathematics and science teachers of current and
future trends, innovations and teaching techniques pertinent
to their fields.

To encourage curriculum developers and publishers to create
products that focus on the interrelationships of science and
mathematics.

To promote standards of excellence in the preparation and
professional development of teachers of mathematics and
science.

To provide a forum for critical examination of the issues and
trends in teaching and learning science and mathematics.

To stimulate research on issues related to mathematics and
science education.

To support and cooperate with other professional organiza-
tions sharing mutual concerns for the improvement of
science and/or mathematics instruction.

To influence policy makers at all levels on issues related to
mathematics and science education.

To build public awareness and support for the importance of
science and mathematics education for all citizens.

From the Purpose Statement of the
School Science and Mathematics Association.
1986
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Introduction

Peggy A. House

As an undergraduate physics major, I was once startled to find a
question of the final exam that asked us to give the title of the book
by X, an author whose name I have long since forgotten. Having no
idea of the correct answer, but knowing that I could not fake so di-
rect a question as that, I left the item blank. To my great surprise, I
later learned that I had received +2 points for not knowing. The
book, destined to become a standing joke around our laboratory,
was titled Physics Without Mathematics, and we had been admon-
ished never to check it out or use it. The exam question was comic
relief from a good-natured professor, but it also served as a stimulus
to serious discussion about the absurdity of trying to estrange
science from mathematics.

.Although that author’s name quickly faded into oblivion, the les-
son I learned from it did not, and as I completed majors in physics
and mathematics, I zame to believe that everyone assumed, as I did,
that science and mathematics were inseparable partners.

My belief might well have been shattered quite abruptly had I
begun my teaching career in a larger high school than I did, but in-
stead I selected a small rural high school in which I was the whole
mathematics department and half of the science department. Having
the same students in science and mathematics courses, together with
the benefit of a flexible schedule, afforded us the opportunity to
study mathematics and physics in a much more integrated manner
than is normally possible. I soon came to realize that I was a better
mathematics teacher because I taught science, and I was a better
science teacher because I taught mathematics. It is a belief I would
cling to all my life.

So it came as something of a surprise when I eventually realized
the degree to which science and mathematics have become separated
in our educational system. Indeed, separation has become a charac-
teristic of the curriculum in general, a trait that deepens as one pro-
gresses up the grades to high school and beyond. In his report on
secondary education in America, Ernest Boyer, former United States
Commissioner of Education and President of the Carnegie
Foundation for the Advancement of Teaching, commented on the
problem as follows:



The current instructional program reflects the compartmental-
ized view of curriculum. Students study world history at 10
a.m., economics at 1 p.m., biology at 9, health at 2. They are
taught literature in one room, civics in another; fine arts on
the second floor; French on the third. While we recognize the
integrity of the disciplines, we also believe their current state
of splendid isolation gives students a narrow and even skewed
vision of both knowledge and the realities of the world !

Recently there has been increased effort on the part of educators
to address the problems caused by the “splendid isolation” which
Boyer described. Jacobs? reported that in 1988 the Association for
Supervision and Curriculum Development (ASCD) conducted a poll
that sampled ASCD members, chief state school officers, deans of
schools of education, and others. The need for curriculum integra-
tion was identified as the number one issue among the respondents.

The same spirit of integration is reflected by the identification of
Mathematical Connections as one of the four strands upon which the
National Council of Teachers of Mathematics (NCTM) has woven
its curriculum standards. The underlying assumption for that stan-
dard is the belief that, “The curriculum should include deliberate at-
tempts, through specific inswructional activities, to connect ideas and
procedures both among different mathematical topics and with other
content areas.’

Such a spirit of interrelatedness between mathematics and
science is the foundation upon which the School Science and
Mathematics Association (SSMA) was conceived. A history of the
Association, published in 1950 in honor of its fiftieth anniversary,
recounted the following developments:4

lBoyer, Emest L. High School. New York: Harper and Row, 1983. Page 114.
ZJacobs, Heidi Hayes. Interdisciplinary Curriculum: Design and
Implementation. Alexandria, VA: Association for Supervision and Curriculum
Development, 1989. Page 3.

3National Council of Teachers of Mathematics. Curriculum and Evaluation
Standards for School Mathematics. Reston, VA: NCTM, 1989. Page 11.

4A Half Century of Science and Mathematics Teaching. Oak Park, IL: Central
Association of Science and Mathematics Teachers, 1950.
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By the turn of the century, science had set its roots deep in the
society of America. Scientific discoveries became topics 2f ev-
eryday conversation. The experimental method of science
rapidly gained popular approval and acceptance. A golden age
of science--a phenomenon of western civilization--was at hand.

This rapid growth and public acceptance of science, coupled
with a rapid increase in the enrollment of secondary schools,
stimulated new development in the teaching of mathematics
and the sciences.

On the crest of this wave of scientific interest and emphasis, a
group of physics teachers from schools in the Central States
met in Chicago in the spring of 1902 to consider the organiza-
tion of an association of physics teachers. A committee of
three was appointed which, after further consideration of the
matter, called a meeting to be held in Chicago, June 7.
Twenty-five schools were represented at this general meeting.
It was a business meeting with no program of papers, and here
it was that an organization entitled the Central Association of
Physics Teachers was formed. A constitution was adopled and .
. . officers (were) elected. . . . Preparations for the next meet-
ing were at once begun . . . .

The fact that the scientific impetus which stimulated the orga-
nization of physics teachers influenced other areas is evidenced
in the action taken by the Mathematics Section of the
Educational Conference of Academies and High Schools in
November of the same year. These teachers were concerned
with the improvement of instruction in mathematics by intro-
ducing the laboratory method and by bringing about a closer
correlation of mathematics with other subject matter of the
curriculum, .:specially physics.

To this end, they set in motion plans which resulted in a peli-
tion, signed by the teachers of mathematics, being presented at
the Thanksgiving session of the Physics Association. This pe-
tition embodied the request that a larger association to include
all the sciences and mather:atics be considered. During the
winter, plans were formulated (o include mathematics and the
other science fields in the April meeting of the Physics
Association. This meeting . . . was the culmination of the




unification movement. The larger organization was named the
Central Association ot Science and Mathematics Teachers. . . .

The third meeting, held November 27-28, 1903, . . . was the
first program meeting of the larger organization. By now, the
Association was well established and the general pattern of its
meetings was set up much in the manner that it remains today.
Dr. John Dewey, then Professor of Philosophy and Education
and Director of the School of Education at the University of
Chicago, made the leading address. His subject was The
Disciplinary Value of Science Teaching,

Following the third meeting, the close correlation of science
and mathematics was evidenced in the papers presented. This
correlation has remained a major theme in the meetings of the
Association to the present time.

One year after the expansion into the Central Association of
Science and Mathematics Teachers (CASMT), in November 1904,
the treasurer reported an Association balance of $35.52. A yearbook
published that year listed 272 members in Illinois, Ohio, Wisconsin,
Indiana, Michigan, Iowa, Minnesota, Missouri, Colorado,
Nebraska, and North Dakota.

In the years that followed, growth of the CASMT was steady, if
somewhat slow. In 1928 the Association was incorporated under the
laws of the State of Illinois. As the membership continued to expand
beyond the central states from whence the CASMT had begun, the
Board of Directors sought an identity that better reflected the national
character of the Association. Accordingly, in November 1970 the
bylaws of the Association were amended to change the name of the
organization to the School Science and Mathematics Association.

The name School Science and Mathematics Association (SSMA)
was chosen very deliberately, for it represented the activity for
which SSMA and its predecessor, CASMT, were perhaps best
known: the publication of the journal School Science and
Mathematics.

Like the Association itself, the journal that was to mature into
School Science and Mathematics began with science. The first issue
of School Science was published in March, 1901, one year before
the birth of the infant Association. In 1903 the Mathematical
Supplement of School Science appeared; in 1904 it became a sepa-
rate journal, School Mathematics. By the end of that year, the two
publications had been wedded into one: School Science and
Mathematics.

[
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Although in the early years the journal and the CASMT were, in
fact, two separate educational agencies, they were always closely
associated and School Science and Mathematics was always con-
sidered to be the official journal of the CASMT. Following the legal
incorporation of the CASMT, the Association purchased the journal
which it has owned, managed, and published ever since.

The early years of this Association were, without a doubt, excit-
ing years to be teaching science and mathematics, although teachers
of today can easily lose sight of the revolutionary developments
taking place at the time. In 1900, the number of elements on the pe-
riodic table was only 83. It had been only three years since
Thomson’s discovery of the electron, and only two years since his
measurement of the charge-to-mass ratio. Millikan would not mea-
sure the electronic charge for more than a decade, and Einstein was
still five years away from publishing his theories of the photoelectric
effect and of special relativity. It would be a quarter of a century
until the development of quantum mechanics, and high-speed com-
puters were still many decades in the future.

For ninety years, School Science and Mathematics has reflected
developments in science and mathematics teaching in the United
States. During those same years, SSMA has remained true to its
original goal of promoting the partnership of science and mathemat-
ics as well as improving the teaching of each. This volume com-
memorates ninety years of dedicated professional activity.

The papers that follow, all reprinted from School Science and
Mathematics, span more than eighty years. They reflect the continu-
ity of our disciplines and of our problems. Many of the issues that
confronted educators decades ago are as contemporary as any we
can name. Thus, for example, Kinney (in 1930) recognized the
mutual interdependence of science and mathematics but bemoaned
students’ inability in making transfers and applications. Karpinski
(1929) contended that progress in mathematics necessarily precedes
progress in science and that a mathematically prepared mind is
essential for great scientific insights to occur. Ingraham (1945) por-
trayed science and mathematics as basic components of a liberal ed-
ucation and insisted that they must be taught along with their histori-
cal and cultural underpinnings.

In 1905, Bishop described attempts to unify physics and math-
ematics instruction, and the laboratory approaches used in the pro-
cess. Sixty years later, Kullman (1966) traced the history of at-
tempts to integrate science and mathematics in the schools.
Questions of how to structure the learning process were addressed
by Ost (1975) and by Cooney and Henderson (1972).




Breslich (1936) saw problems of science as the vehicle for in-
creasing students’ mathematical power, and he offered examples of
strategies for furthering such integration. Carpenter (1962) exam-
ined the relationships between school mathematics and physics,
while Schaaf (1965) proposed a sample of scientific concepts that
can and should be taught in Conjunction with junior high mathemat-
ics.

The partnership between science and mathematics in the elemen-
tary school curriculum was not overlooked. Brogan (1939) posed
the question of whether science (including arithmetic) is a body of
subject matter to be acquired or a set of procedures students need to
develop in order to secure increasing control over their lives. Nelson
(1962) pointed out that opportunities for normal integration of
science and mathkematics occur daily when working with young
children, and she urged teachers to take advantage of such oppor-
tunities. Brown and Wall (1976) discussed content common to
mathematics and science that can and should be dealt with in a labo-
ratory situation with children, and Benham, et.al. (1982), described
activities that encourage very young children to develop necessary
observation skills.

Other writers examined specific aspects of the curriculum.
Georges (1926) saw functional thinking, i.e. the investigation of
relationships between associated quantities, as central to both math-
ematics and science, and he noted that mathematics and physics are
inseparable in their dependence upon relationships. Goodrich (1935)
presented algebra as a medium for interpreting and controlling na-
ture; Bubb (1937) saw geometry as guiding the development of nat-
ural science.

Contemporary issues were addressed by Dean (1975) and by
Ost (1987) who discussed the role of modelling and simulation in
contemporary science and mathematics. House (1988) reflected on
the dispositions that contemporary students and teachers of science
and mathematics will require for success in the technological society
that will characterize SSMA'’s second century.

In some ways, there is evidence of progress over the century.
For example, the obvious references to virtually all mathematics and
science students and teachers as male, a characteristic of all of the
older papers, has vanished from contemporary writing. On the other
hand, it is hard not to be depressed by the realization that we are
still, after all these years, trying to solve so many of the same prob-
lems that plagued our predecessors.

So as we near the close of this century, it behooves us to reflect
on the themes that are interwoven in this sampling of writing taken
from throughout the past 90 years. The motivation that gave birth to



the infant CASMT ninety years ago and the challenges that drove the
members over the decades remain the central focus and the urgent
needs of the mature SSMA:

Science and Mathematics—partners then,
partners still.




Although mathematics has developed, and is
developing, within itself as a system of thought, its
development has been, and is now, spurred on by the
demands of the sciences. The sciences, in turn, owe
their development, in large measure, to
mathematical methods. Moreover, the more
mathematics contributes to their development, the
more do they become dependent upon it.

J. M. Kinney, 1930

[. The Interdependence
of Science and
Mathematics

The fundamental mathematical theory has always developed
independently of the physical phenomena which it explains.
Again and again it would almost seem that the experimental
scientists waited to allow the mathematician to go ahead and

pave the way. The physicists and the scientists who have
made progress have approached the science, in general, with
the mathematical tools prepared, with adequate mathematical
equipment.

L. C. Karpinski, 1929

May I say quite frankly that I do not think a man who has
narrowly specialized in mathematics or who has narrowly
specialized in one of the sciences has gained, thereby, enough
to make up for what he has lost.

M. H. Ingraham, 1945




Cooperation in the Teaching of
Science and Mathematics

J. M. Kinney
(Vol. XXX No.3 March, 1930)

This Journal bears the name School Science and Mathematics be-
cause of the recognition of the fact that science and mathematics are
closely related systems of thought. The interdependence of these
two fields comes about in large part because they are both interested
in variables and functionality. Thus, to carry out a scientific investi-
gation of a phenomenon is to note variables associated with it, to
collect quantitative data relative to these variables, to arrange the data
in some sort of order for the purpose of displaying a relationship
among them, and finally, if the investigation has a successful out-
come, to find the precise character of this relationship; that is, to find
the mathematical law governing the phenomenon and express it in
the %}mbolism of mathematics.

e find a good example of scientific procedure in the work of
Tycho Brahe, Kepler, and Newton relative to the behavior of the
planets. The great mass of data collected from observations on the
planets made over a long period of time by Tycho and Kepler led the
latter to the discovery of three relationships between certain variables
and known as the Laws of Kepler. From these laws as a basis of a
mathematical investigation, Newton discovered a law of gravitation
which held for the planets, a law which he later assumed to be the
Universal Law of Gravitation.

The laws of science give rise to functions which become objects
of investigation in the field of mathematics. Many times it happens
that these functions arising from widely different fields of science
are “concrete” instances of an abstract mathematical function. Thus,
the law of gravitation, F=k/d?, the law of the intensity of illumina-
tion, /=k/d?, and the resistance of a wire to the flow of electricity,




R=k/r?, may all be expressed in the form, y=k/x?, having no refer-
ence to a concrete situation. This function may be studied in the ab-
stract and the results of the study may be applied to any concrete sit-
uation giving rise to a function of this form.

We have been saying that science and mathematics are related.
This relationship is put quite vividly in evidence in the highly devel-
oped physical sciences. Some of the more recently developed
sciences, such as chemistry, biology, medicine, psychology, educa-
tion, sociology, economics, anthropology, meteorology, and many
others, are assuming a mathematical form. Although mathematics
has developed, and is developing, within itself as a system of
thought, its development has been, and is now, spurred on by the
demands of the sciences. The sciences, in turn, owe their develop-
ment, in large measure, to mathematical methods. Moreover, the
more mathematics contributes to their development, the more do
they become dependent upon it.

It follows, therefore, that people working in the scientific field
are acutely conscious of the need of an extended mathematical train-
ing. Those who have not made an adequate mathematical preparation
find that they are greatly handicapped in reading modern scientific
literaiare. On the other hand, many people working in the field of
mathematics feel the need of keeping in touch with science. They get
pleasure from seeing the applications of mathematics to concrete sit-
uations. In recent years teachers of mathematics have been pleased
to see numerous articles in this Journal and elsewhere bearing on the
applications of mathematics to widely separated fields of scientific
investigation.

On account of this increasing reciprocal interest on the part of
teachers of science and mathematics, there will no doubt be a
marked increase in the enrollment of students in these fields. The
percentage of increase should be greater in the department of math-
ematics. The large majority of students enrolling in this department
will expect to get therefrom ability to do the quantitative thinking of
science.

The problem of making the mathematical training of the student
function in the field of science presents itself for solution more ur-
gently than it has in the past. The solution of the problems calls for a
sympathetic spirit of cooperation on the part of teachers in both
fields. In the past this spirit has not been sufficiently in evidence.
Teachers of science have complained that their students could not
satisfactorily apply their mathematics; that not only was there but
slight transfer but that also there was but little evidence of mastery of
mathematical principles. This statement holds for arithmetic, alge-
bra, and geometry. Many teachers of mathematics have replied that it

12
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was their business to teach mathematics as such, and that it was the
business of the teacher of science to see that the transfer was made.

We feel that both of these attitudes are wrong and should be re-
placed by a sincere desire for cooperation. The proper spirit of co-
operation can be brought about if teachers of science and mathemat-
ics recognize the fact that they have very much in common. They are
both dealing with quantitative problems. They are both dealing with
variables and their relationships. It is this notion of functionality,
especially, that is of such fundamental importance in both science
and mathematics. They are both interested in a symbolic language
for the expression of their quantitative thoughts.

The learning product turned out in both fields will be much more
satisfactory if their respective teachers can agree as to the emphasis
that should be placed by each on the various phases of the quantita-
tive problem. We feel that such an agreement can be attained. We
suggest that teachers of mathematics teach the symbolic language.
They should not confine their use of letters to x and y. but should
use freely the letters that are used in the formulas of science. They
should teach the fundamental processes and see that they are applied
not only to abstract but also to concrete situations. They should
stress functional thinking from the beginning to the end. They
should lead students to see that an abstract functional form may have
many different concrete applications. They should give students
abundant practice not only in passing from the concrete to the ab-
stract but also in passing from the abstract to the concrete.

Teachers of science should recognize the fact that their quantita-
tive problems deal for the most part with technical situations. They
should note the fact that students may be required to recall a mathe-
matical notion or process from arithmetic, algebra, geometry, or,
possibly, trigonometry and bring it to bear on their problem. If the
problem involves a functional relation, as it quite probably does,
they should perhaps help the students recall the abstract form of the
relationship. Above all teachers of science should be conscious of
the fact that transfer for the average student takes place with diffi-
culty even in such closely related fields as science and mathematics.




Mathematics and the Progress of
Science

Louis C. Karpinski
University of Michigan
(Vol. XXIX No.2 February, 1929)

The other day I'read an advertisement of a new book on the practi-
cal applications of the fairly old subject of probability. The practical
author asserts that probability is “no longer the plaything for the en-
tertainment of the erudite mind, but is a powerful instrument of
practical science.” This statement reflects an absolute misconception
of the nature and purpose of mathematical reasoning. Fortunately it
is only a few shallow scientists to whom the powerful tools placed
in their hands by pure mathematical research will appear as play-
things devised for entertainment. Mathematics needs no justification!
The theory of probability has been studied by intelligent men as a
part of fundamental truth. It happens, then, that the theory applies to
many situations in the work-a-day world; it happens that in
manufacturing the theory applies to the distribution of a large group
of objects, like electric light bulbs, into groups having given charac-
teristics; it happens that in insurance and in other industrial opera-
tions probability has its applications. But when these light bulbs are
replaced by some more effective method of illumination, and when
these industrial devices have long been placed in the discard, the
theory of probability will continue to illuminate, will continue wor-
thy of serious study by intellectual bein%s.

The world of mathematics is a reality more enduring than the
animals and plants, the changing objects and situations among
which we live. To this reality the mathematician devotes his attention
because he must. It is an inner compulsion.

Mathematics is closely akin to art in its methods and in its inspi-
ration. The poet feels within himself an impulse to write in verse; the
painter has before his mind’s eye a beautiful picture; the architect

21
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sees a majestic building; the great musician hears a beautiful melody.
And in each case the artist creates primarily for himself, to satisfy
that inner demand. So it is with the mathematician; the theories
which he elaborates are ends in themselves, sufficient unto them-
selves.

These numbers, these algebraical symbols, these geometrical
elaborations, these extended speculations do correspond, it fre-
quently happens, to diverse actual situations in the world of com-
merce and of science. By means of these tools the things which
happen in the laboratory, in the community, and in the universe of
the stars or the atoms may often be measured, studied and under-
stood.

The fundamental mathematical theory has always developed in-
dependently of the physical phenomena which it explains. Again and
again it would almost seem that the experimental scientists waited to
allow the mathematician to go ahead and pave the way. The
physicists and the scientists who have made progress have ap-
proached the science, in general, with the mathematical tools pre-
pared, with adequate mathematical equipment.

Take such simple curves as the conic sections associated through
the analytical geometry with quadratic equations.

These curves, first as cut from cones with varying vertex angles,
the ancient Greeks studied simply and solely because these curves
seemed to them logically to follow upon the circle. A whole suc-
cession of Greek mathematicians studied the properties of these
curves; they learned how to draw tangents and normals and even
tangents from an external point. Finally Archimedes learned how to
compute the area of segments and the volumes of related solids. All
of this the mathematicians did without happening to find the focus of
the parabola which Pappus placed upon the map some four hundred
years later. No one of these men knew or cared about any practical
application of these curves.

Nearly two thousand years later Kepler, a student of mathemat-
ics and astronomy, found that the orbit of the earth was not circular.
Kepler turned naturally first to the ellipse with whose properties, as
a serious student of the mathematics of his day, he was familiar. So
he was able to find that the paths of the earth and other planets are
ellipses with the sun as one focus. Kepler was able, through his
familiarity with the conic sections, to enunciate the three theorems of
planetary motion. This knowledge of the properties of the conic
sections Kepler obtained as a student of mathematics. Neither the
Greeks who began these studies nor Kepler when he studied the
Greek developments had any notion of their application to astronom-
ical problems. Had Kepler not had this background of mathematical
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information and training the world would have waited considerably
longer before the astronomical facts would have received their
correct interpretation.

Not long afterwards Galileo Galilei wished to investigate by ex-
periment the motion of a falling body. Here again a simple mathe-
matical law was found to explain the motion. Galilei was able to
show that the space passed over in successive seconds was propor-
tional to the successive odd numbers. As a result, the total space
passed over by a freely falling body is given by the quadratic equa-
tion s=16¢2. This of course is connected with the beautiful fact that
the sum of first n successive odd numbers is n.2

Upon these foundations of the conics and their properties, and
of the planets and their motions, Isaac Newton built kis universe.
Essential to his formulation and explanation was not only the math-
ematical work on the conics, the work on the planets and on falling
bodies as given by Kepler and Galilei, but equally the new tool of
analytical geometry which had just been placed in hiz hand by
Descartes. The three laws of planetary motion, as enunciated by
Kepler, became special instaries under a more comprehensive law,
as given by Newton, and because Newton’s equations are more
powerful and more comprehensive than Kepler’s, for that reason
Newton is a greater genius than Kepler.

Kepler and Galilei and Newton are universally regarded as great
scientists, not because of their remarkable powers of observation but
primarily because back of the observed facts these men saw
mathematical formulas. Not only are the observed facts subjected to
the mathematical formulae, but out of the mathematical formulation
comes new light upon the observed facts, with new facts and new
aspects revealed only by observation again in the light of the for-
mula. The real value of a formula is revealed, not in its explanation
and interpretation of what has happened, but rather in its power to
guide the intelligent observer to new truths.

Today the automobile engineer uses the parabola to fashion the
automobile headlight; the architect uses the parabola to build the
auditorium and to build his finest bridges; the student of projectiles
begins with the parabola. Progress is made by the use of these ge-
ometric curves with simple algebraical properties. While these
curves were originally studied as simple geometrical exercises, the
teacher today who does not point out their many uses in practical af-
fairs misses a great opportunity to impress upon the pupil the part of
mathematics in the progress of science and to impress upon the pupil
the universe as ruled by mathematical law.

As I have said, the outstanding characteristic of a great physicist
or astronomer is the ability to interpret and extend his observations
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by means of mathematical formulas. Only rarely is there an excep-
tion to this rule. Such an exception was doubtless Faraday whose
contributions to the science of electricity press in upon us wherever
we live. However, Faraday himself knew that lack of familiarity
with mathematics was a serious drawback. Upon Faraday’s obser-
vations Clark Maxwell reflected and evolved the famous Maxwellian
equations. As an almost immediate magnificent product of the
mathematical consideration came the electro-magnetic theory of
light. Again twenty years later, upon the basis of the mathematical
formulation, the German Hertz regarded the phenomena anew, un-
der the light of the mathematical formulas, and the marvels of wire-
less electricity began to appear.

These mathematical speculations and their mathematical conse-
quences created a new heaven and a new earth, for the old physics is
passed away. The new heaven is mathematically determined to be
finite, while the new earth consists of mathematical combinations of
a hydrogen nucleus with attendant electrons. However, while these
mathematical speculations so intimately connected with the relativity
theory are beyond the ordinary scientist, yet everyone who listens to
the radio should recognize also the voice of the mathematical for-
mula.

By the recent development in the new physics, the work of
Maxwell takes a place alongside Newton’s Principia. In these works
we have the universe subjected to that mathematical formulation. A
great body of physicists have contributed to the mathematical
extension of Newton’s universe as expressed in the Einstein
emendations. In this new universe the great groups of phenomena
such as those connected with light and electricity and magnetism are
treated simultaneously as different aspects of similar phenomena.
The same equations govern different phenomena and often give re-
markable analogies. Chemistry and astronomy and even medicine
cannot remain aloof from these mathematical considerations of the
electrons. No one can see or prophecy the end, but one can say with
confidence further progress will be reflectcd in further mathematical
formulation.

Doubtless the Maxwell equations represent the highest contribu-
tion of mathematics to the understanding of the universe in which
we live. Yet the same type of illumination is afforded by diverse
other fields of pure mathematical speculation. For many centuries
the students of mathematics labored with the problems arising out of
the representation of numbers. When it was found that negative
numbers could be represented by points on a line symmetrically
placed with respect to an origin, representing 0, a great step was
made for advance in the theory of equations. At the same time the
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notion of a vector was suggested, so that by consideration of the line
segment as having magnitude and direction a powerful tool was
given to the physicist. It was comparatively easy for the mathe-

matician to see that the V2, V'3 and other quadratic irrationalities
would be represented by absolutely definite points upon this line of
real numbers. The fact, too, that to each real number corresponded a
definite point upon this line also offered little difficulty.

In this way the negative and irrational solutions of equations
came to be accepted as on a par with solutions in rational numbers.
However, the complete acceptance of the complex number waited
upon some graphical representation. To this problem no less than
three mathematicians, the Norwegian Kaspar Wessell, the great
German scholar Gauss, and the Frenchman Argand, found indepen-
dently the solution, the complex number diagram which is known
today even to our high school students.

For the theory of algebraical equations this conception gave to
that great genius, Gauss, the suggestion for the proof of the theorem
that every polynomial in x with real and complex coefficients has a
root, the so-called fundamental theorem of algebra. But it was not
long before the physicist discovered that this new speculation of the
mathematician afforded elegance and simplicity in the consideration
of diverse problems of nature. Thus the theoretical treatment of al-
ternating currents is made easily intelligible by a Steinmetz, employ-
ing the symbolism and the methods of operations with complex
numbers.

Progress in science has been preceded by progress in mathemat-
ics. Certainly so far as the science of physics and astronomy is con-
cerned it is true that progress has been expressed in mathematical
formulas. The laws of physics and the laws of planetary motion are
mathematical statements concerning the physical phenomena. Today
even the biologist and the student of medicine, as well as the
chemist, are looking to the physicist for an attempt at a mathematical
formulation of the phenomena of the test tube, of the growing plant
and the human body.

For the secondary school teacher the question is vital: Can the
student study physics and other science first and leam the necessary
mathematical formulas and methods as the need arises? The answer
of history is absolutely and emphatically, No. Had Kepler not been
familiar with the mathematical theory of the conic sections he would
not have been able to formulate the laws of planetary motion. Had
Newton not been acquainted with the mathematical advances of his
day, and the geometry of the Greeks, his conception of the universe
could not have been formed or formulated.
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Helmholiz made enduring contributions to the theory of sound
because as a young student at Berlin he occupied himself with math-
ematics and physics. When his work in medicine brought to his
mind the problems of sound, Helmholtz had the indispensable
preparation, and he was able to solve problems which would have
been for him forever unsolvable if he had been required to go back
to build up the theoretical foundation.

Maxwell had that thorough mathematical preparation which en-
abled him to see the formulas back of the electro-magrnetic phenom-
ena. A whole host of recent physicists like Michelson and Einstein
have had such a profound grasp of mathematics that the new
physics, a mathematical creation, has emerged. The mathematical
training of these men began in their early student days and it has
continued ever since.

For the boys in your high school the lack of the instruction in
elementary algebra, in geometry, in elementary trigonometry will
absolutely bar their way to the sciences; it is as serious for them as
lack of mathematical training is for the physicist today. For 99 oat of
100 in college it is too late to turn back, to pick up that elementary
instruction in the mathematics which today, more than ever, is
essential for progress in science. “Time never turns back” and the
student who waits to learn his mathematics and the physics, the the-
ory, as he needs it, that student will never find it necessary.
Progress will not wait for him.

It is not possible in the limited time to touch upon many of the
contributions of mathematics to progress. In economics, in many
phases of biology, in insurance, in almost all phases of engineering,
mathematics plays an important role. Newton would be surprised
and pleased that his binomial expansion proves so usual in modern
business. Leibniz and Newton and Descartes would congratulate
themselves upon the wide uses found for the methods of analytical
geomeiry and the calculus. The mathematicians of Greece and India
and Arabia and Europe who for pure love of science evolved the
trigonometry would be surprised to find their tables and their meth-
ods in daily use in the great factories and in the workshops.

But no one of these thinkers of past ages would feel that his
search for mathematical truth needed the practical application to jus-
tify his study. Even in those ancient days the circle and the parabola
and the ellipse were realities, and the numbers of arithmetic and the
symbols of algebra and geometry and trigonometry and calculus
created a world whose reality cannot now be disputed.

Today more than ever number rules the universe; and apprecia-
tion of the universe in which we live as ruled by number and by
form is cultivated by the proper study of mathematics. Number and
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form are guiding principles in all reasoning involving quantitative
relationships. Even in the fields of ethics and philosophy and reli-
gion the serious student is frequently compelled to become precise
and definite by mathematical illustration. Thus it is related that when
Plato lectured on beauty some of the listeners protested because he
began with geometry. And today for any intelligent comprehension
of the economic foundations of our society and for any slight un-
derstanding of the universe of the stars or the atoms, for apprecia-
tion of many of the most fundamental developments which distin-
guish the reasoning creature, man, from the dumb brutes, the study
of mathematics is essential. Show to your pupils that mathematics
opens to their minds many doors which will in all likelihood forever
remain closed if in the high school the opportunity to begin this
study is neglected.
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Mathematics and Science in a
Liberal Education!

Mark H. Ingraham
University of Wisconsin
(Vol. XLV No. 2 February, 1945)

Ladies and gentlemen, as I understand it, when the Romans used
the phrase “Liberal Arts,” Artes Liberales, they referred to those
branches of learning which only free men were permitted to pursue.
Although I do not, myself, believe in always strictly following the
original meaning of the word or phrase, today I want to explore the
contribution that the study of mathematics and science can make to
the life of a freeman, and to say something about how this contribu-
tion can be enhanced.

I wish to discuss this subject in relation to three aspects of the
education of a free man. First, we should seek the enrichment of the
life of the student, and I do not believe it is selfish on his part to
seek this enrichment. It is his birth right, left to him by generations
of scholars. Second, the early education of a free man should leave
freedom for later specialization and later choices of occupation.
Third, the education of a free man should equip him for his duty as a
citizen of the state.

When I say that the education of a free man should enrich his
own life, I mean this in a very broad sense, spreading all the way
from the mere relief of boredom to the deepest intellectual and es-
thetic satisfactions. Even the relief from boredom is no mean ac-
complishment. Americans pay billions of dollars a year for this and,
until rationing, untold quantities of gasoline. But, of course, the en-
richment of life goes far beyond any escape mechanism. To lead a

1Presented before the Junior College Group of the Central Association of
Science and Mathematics Teachers at Chicago, November 25, 1944, The author
was Dean of the College of Letters and Science, University of Wisconsin
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rich life a man must be the kind who will draw out the best in the
companionship of others. No man is the same to two different per-
sons, and another person may give little to me where he has much to
give to another, not because of the fault of the giver, but of the re-
ceiver. Enrichment of life includes a sense of the unity of one’s life
with that of the race and with one’s environment. Enrichment of life
includes a satisfaction at the level of the appreciation of poetry, or
art, and of the understanding of knowledge. It also includes just
plain fun.

A man is not a free man if his past has tied his future to such an
extent that he is constantly not making choices of volition but by the
compulsion of inadequacy. It is the minority of cases, and I believe
the unfortunate ones, where a boy in high school really knows what
he wants to be when he is a man. [ had the good fortune of not de-
ciding on my profession, although I thought I had, until I was
through college and through two years in the service. One of the
ablest scientists I know, a member of the National Academy, ma-
jored in the classics and lives without regret that he did so. One’s
freedom should be maintained as long as possible. One of the great-
est accomplishments that I know is to come up to the emeritus status
with the flexibility to still make a decision as to what one should do.
How would this do for a definition of liberal education? A man is
liberally educated if, when he becomes emeritus, he genuinely has a
large freedom of choice of occupation. I think with pleasure of three
scientists, one of whom spent his years after retirement in the inten-
sive study of Japanese prints; the second in writing delightful essays
of noble inspiration on the lives of great scientists; and the third,
who had had his scientific career interrupted by about forty years of
college administration, has made an international reputation in biol-
ogy since reaching seventy-five.

But no freedom is complete. One man’s activity limits his neigh-
bor, and the free man must also share in the government that deter-
mines the controls of his and his fellows’ freedom. The education
for freedom must include an education for this participation.
Freedom without such education is dangerous, and I am not sure but
that the Romans were right in also considering as dangerous such
education without freedom.

I turn now to consider the contributions that science and mathe-
matics make, or can make, in the education of a free man, especially
with respect to the three forms of freedom I have mentioned.
Because I put certain objectives first and the means last, do not think
that [ have fallen into the currently fashionable error of believing that
is how we build sane educational practice. Some day it may be pos-
sible to do this, but as yet we know far better what portion of our

24

W
i




education is good than why it is. The real logic of this paper is that
1) experience, subjective and objective, has amply demonstrated the
liberalizing value of mathematics and science and some inadequacies
in its teaching; 2) the knowledge derived from this experience may
be organized in many ways, some of them illuminating. The present
description is derived from what to the author is such an illuminating
organization. But before that attempt to fit these contributions into a
pattern, I would like to say a few words as to what those contribu-
tions themselves are.

First of all, the study of science and mathematics introduces us
to a large body of organized and valuable information. I think we
too often, in saying what scientific education can do in the way of
introducing us to methods of thinking, forget the value of an in-
formed mind. It seems to me that we should mark as fatuous any
scientific education that isn’t very largely informative. Secondly, a
study of science and mathematics introduces us to great examples of
constructive imagination. Of course, not the only examples. On one
occasion, I risked my reputation by listing as, in my opinion, the
greatest book ever written by a single individual, Dante’s Divine
Comedy, and further risked it by placing Newton’s Principia sec-
ond. In the company I then was, the second statement was the
greater risk. I presume that is not the case now. It is not just the
facts, but the organization of the facts that marks science. The ar-
rangement of the Periodic Table, the Mendelian Hypothesis, the
tracing of the history of the glacial epoch, and the quadratic re-
ciprocity theory are not examples of mere noting of facts, but of a
type of imagination that can conceive those facts in their relation-
ships. Thirdly, though trite, we must not forget that the study of
science should give insight into the scientific method including such
aspects as the method of forming deductive patterns, most clearly
exemplified in mathematics; the method of forming hypothetical
patterns to be exploited deductively and checked inductively; the
method of the laboratory, which both checks these hypothetical pat-
terns and leads one to form new patterns; and throughout the attain-
ing of certain standards of excellence, as for example the standards
of mathematical rigor and mathematical elegance, and the standards
of scientific verification. We should also recognize that both mathe-
matics and the mathematical sciences develop the ideas of quantita-
tive thinking to a marked degree.

With this introduction I would like to point out how the study of
mathematics and science can serve the education of the free man as
detailed above, with some comments as to how this service can be
maximized.
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First of all, I think the study of mathematics and science is for a
great many students fun, and can be made so for many others. The
last time I looked up the figures there were a higher percentage of
F’s and a higher percentage of A’s in mathematics than in any other
subject of large election in the University of Wisconsin. Correlative
to that, I believe there are more students who hate mathematics and
more students who love it than any other subject. I just cannot un-
derstand how a person would not enjoy Euclid’s proof that there are
an infinite number of primes or the fact that every integer can be ex-
pressed as the sum of four squares. Incidentally, in my opinion
there is more fun in number theory than in most branches of mathe-
matics, and there are parts of number theory, for instance the sieve
of Eratosthenes, which may be shown to the students far before al-
gebra is usually introduced. Other people find a great deal of plea-
sure in the coordination of brain and hand, which is developed in the
demonstration of natural phenomena by technical laboratory means,
and it would be pretty difficult to be bored in the country side if one
knew a little of botany and ecology.

The man who has a knowledge of natural phenomena is far less
lonely than he who has not. It not only opens for him the compan-
ionship of many of the best minds around him, but also the sense
that he is a part of an orderly yet wonderfully diverse universe. In
the teaching of science, in particular, it seems to me to be well to
stress this wholeness and this diversity even at the expense, at
times, of time spent on acquiring technical knowledge.

May I say quite frankly that I do not think a man who has nar-
rowly specialized in mathematics or who has narrowly specialized in
one of the sciences has gained, thereby, enough to make up for what
he has lost. The man who has shut out from himself a continuing
interest in literature and in history is blind to a whole band in our
intellectual spectrum. I am, therefore, not pleading for the life of a
scientist to the exclusion of all else but for the enrichment which
science can bring to a life which is also to be enriched by the study
of the humanities. I think, therefore, one should consciously con-
sider in teaching either mathematics or science that broad relation-
ships of man and his environment should be revealed to the student
and the plain pleasure that even a non-scientific student can get from
the study, as well as any technical efficiency that may be attained.

In planning a curriculum I believe one of the prime considera-
tions is to keep, as long as possible, as many doors open for the
student’s future as can be. Mathematics is a good illustration. To a
mathematician, mathematics is a joy in itself, but for everyone it can
be a useful tool. The degree of usefulness depends upon the extent
of the knowledge, but to even a greater degree upon the mastery of
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the portion of the subject covered. At the University of Wisconsin a
student may enter the university without any high school mathemat-
ics. However, unless he has had a year of geometry and a year and a
half of algebra, he may not have full admission to the College of
Engineering nor the course in Agricultural Engineering; and unless
he has had a year of geometry and a year of algebra, or unless he
has made these up (which is seldom done) he may take no work in
astronomy, mathematics or physics; he may not enter the course in
Chemistry, Medical Technology, Nursing or Pharmacy; and he may
not major or specialize in American Institutions, Bacteriology,
Biology, Chemistry, Commerce, Economics, Geology, Humnanities,
International Relations, Mathematics, Physics, Pre-Medicine,
Political Science, Psychology, Sociology or Zoology. He may not
become a junior in the College of Agriculture. These decisions were
not made upon the urgings of the Department of Mathematics, but
upon the advice of the individual departments concerned as to
whether or not the student was qualified to do the work unless he
has had this small amount of mathematical preparation. These are
too many doors for a boy of fifteen or sixteen to slam in his own
face.

No one of the sciences could probably furnish a similar list, and
yet whole areas of understanding are closed if at the proper time a
student does not become acquainted with the basic scientific facts in
several fields, and with the scientific method. To keep one’s choices
open as to both vocations and avocations, it is clear that a person
should have a fundamental knowledge of history, science, and the
social studies, an appreciation of literature, ability to read and write
accurately (the study of science is one of the media for attaining this
ability and should be consciously used), the ability to think quantita-
tively and at least to be accurate in elementary calculations. I would
grant immediately that a person may not meet all these requirements
and may still have a rich life, and by no means be a failure. I am
asserting that such a person is not as free as he should be.

When we deal with the duties of the citizen, it must be granted
that the first subjects we must insist upon would be history and the
analytical social studies. However, the problems with which a
community must deal and deal intelligently require not only the ad-
vice of the expert scientist, but I believe also the judgment of a citi-
zenry, not too ignorant of the basic ideas of science and technology.
One of the men I know who has the broadest conception of the
proper controls of radio is an electrical engineer. The decisions as to
the issuance of bonds for a new sewer system certainly involve
problems of bacteriology, and the person who gets scared every
time he sees a statistical table is, in my opinion, unqualified to vote.
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I wish to end with a few more or less dogmatic statements con-
cerning the teaching of science and of mathematics which I believe
are the corollaries of the foregoing development. The more dogmatic
statements will be concerning mathematics; the less, concerning the
teaching of science. First, throughout the mathematical training
should be placed more emphasis on the mastery of arithmetic, in-
cluding the ability to carry out long arithmetic processes accurately
with suitable checks. This facility with arithmetic gives the insight
that makes algebra easy, opens up many applications to the individ-
ual, makes it easier for him to catch the buncombe of a grocery clerk
or a politician, and next, perhaps, to concise and grammatical speech
and understanding reading, is the most used of our intellectual tools.
Secondly, I would make mathematics more amusing by including
some topics just because of the fun involved. Illustrations are items
connected with prime numbers, and I would say a reintroduction of
continued fractions. Thirdly, I would place more emphasis on
proofs than is currently the fashion. Please do not misunderstand me
in this regard. I think there is little value in memorizing a proof in
the step-by-step detail fashion that some students resort to, and I do
not know that we need to cover more proofs than at present. I do
feel that greater emphasis on the nature of proof and the understand-
ing of proofs is needed. We do not ask students to go through
proofs chiefly to convince themselves that a statement is true.
Generations of scrutiny of Euclid will be a better guarantee of the
validity of the reasoning than the student’s own examination. But
proofs of theorems indicate the interrelationship between one portion
of a theory and its general background. It is only through the proofs
that the structural pattern is seen. It is only through the proofs that
the constructive imagination of a mathematician is understood. It is
chiefly through the proofs that the beauty of mathematics is revealed
to the student. I would suggest that frequently, in place of proving
five theorems, it would be wise to get five proofs of the same theo-
rem. Take a theorem like that of Pythagoras. | have used that theo-
rem constantly and have known kow to prove that theorem occa-
sionally for the last three decades, but it was not until recently when
I noted a proof new to me that I understood certain aspects of its re-
lationships to other parts of mathematics that I had never seen be-
fore, and that the thecrem became a “natural” instead of a sport.

Where, you may ask, will the time come for more drill in arith-
metic, for more fun in subject matter, and for more attention to
proof? My answer is a clear-cut compromise: You will have to get
some of the time by omitting topics, and you will have to get a great
deal of the time by demanding more of the student than is usually
done, and in some cases you will have a chance to do what I indicate
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only for the better students who can brush off the ordinary amount
of mathematics in a trivial amount of time. I may add, however, that
I'am so firmly convinced that much of the time and energy that a
student puts on mathematics could be saved if the arithmetic were
more soundly founded, that I believe that aspect will be time saving
rather than time using,

I am very much more tentative in my conclusions as to the
teaching of science. My first conclusion, however, is the negative
one that it is unwise to give up laboratory work in science to teach-
ing exclusively by lecture and by demonstration. However, I believe
that for a very large number of students, both those who are not
going to be scientists and those whose scientific endeavor is going
to be in a different field, the laboratory work could be modified so
as to emphasize to a lesser degree modern technology and to a
greater degree scientific imagination. Certainly a student should have
the oprortunity to have a question posed and find out for himself the
answer by planning and carrying out the experiment with, if neces-
sary, quite crude laboratory techniques. In large institutions, and
perhaps even in large high schools, there should be the choice for
the introductory courses between one that is especially planned to
prepare the student for the more advanced phases of the same sub-
ject and those that are the background of the culture intelligent citi-
zen. I do not like survey courses which merely attempt to cover a
larger area by making the coating thinner. I do believe, however,
that for the student who is only going to devote a strictly limited time
to the physical sciences, a more satisfying selection of topics and of
laboratory experiments can be chosen from the fields of physics and
chemistry than from either one alone. I do believe that for the stu-
dent who is not going to be a biologist, a more useful selection of
topics can be chosen from the fields of zoology, botany, human
physiology, and bacteriology than from zoology or botany alone,
and that the general citizen who does not complement his geography
with geology or vice versa has paid highly for his dab of specializa-
tion by only dipping into one of these subjects. Courses which
spread much beyond the ranges just indicated lack so much in unity
that I doubt the wisdom of giving them.

These interdepartmental programs lead to some difficult educa-
tional problems: problems of advising, problems of the student who
changes his mind (a privilege I wish to maintain), problems of se-
lection of laboratory material that will not be too spotty, and at the
same time problems of maintaining standards which have been
established for the technical introductory courses and have not been
a tradition of the survey courses. Some of these things I have said
tentatively even if they sounded dogmatic. May I be dogmatic on
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this: that unless these broader courses are\planned by able scientists
rather than as the escape activity of a man who has not done any re-
search, the breath of life will not be in them. And for both mathe-
matics and science I would like to make one further remark. The
subjects should be taught in such a way that social and economic
significance of modern technology and modern scientific knowledge
is brought to the attention of the future citizen. Moreover, both of
these subjects should be taught with much greater emphasis on their
history, on their development as human activities, and on their place
along with literature and art as the flowering of the human spirit,
than has been done in the past. The fundamental theorem of algebra
without a knowledge of Gauss, Newton’s interpolation theory with
no idea of who Newton was, the Mendelian law with no picture of
the priest, Mendel, and his garden, does not represent the knowl-
edge of science as a living organism that we should have.
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Mathematics, it is affirmed, has made physics
unpopular. Language without words would be
about as sensible as physics without
mathematics.

F. L. Bishop, 1905

The giants of mathematical thought often have been
scientists of the first magnitude, and a certain
degree of reciprocity exists between even the purest
mathematics and the most practical science.

D. E. Kullman, 1966

[l1. Integrating Science
and Mathematics in
the School

Curriculum

Teacher education, whether it be pre-service or in-
service, is a major factor that must be faced realisti-
cally. Discipline-oriented individuals must be re-
oriented if they are to successfully work with
unified curricula. Discipline-oriented college
curricula certainly are major obstacles.

D. H. Ost, 1975

One can conjecture that, should mathematics and science
teachers help students structure their knowledge, the student
himself may develop strategies for organizing his knowledge in
other subjects. It is a researchable conjecture.

T. J. Cooney and K. B. Henderson, 1972
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Progress in the Correlation of
Physics and Mathematics!

F. L. Bishop
Bradley Institute
(Vol. V No.3 March, 1905)

The progress that is being made in the correlation of physics and
mathematics is so extensive as regards amount of territory covered,
and the methods employed differ so greatly that it is almost impos-
sible to rightly estimate its absolute value.

Professor E. H. Moore of the University of Chicago writes “that
distinct advances in this direction are being made in England,
Germany and France, at least to the extent that first, the work in
mathematics is treated as a single whole; second, it is done simulta-
neously with physics; third, it is done as far as possible by the same
instructors. This facilitates actual and continuous correlation.”

At a meeting of the Mathematical Club of the University of
Chicago held during the last summer quarter, reports were made
showing progress on the Pacific coast, in the South and in the
Middle West. A factor in this country tending toward correlation is
the organization of such clubs as the Association of Teachers of
Mathematics in the Middle States and Maryland. Its first meeting
was held at Teachers College, New York City, on November 28,
1903. Among the papers read were “The Laboratory Method of
Teaching Mathematics,” “Geometry in the Grammar School,” and
“Has Algebra Any Genuine Application?”

By such organizations as the Eastern Association of Physics
Teachers this subject has received more or less consideration, the

1 Address given before the Mathematics and Physics Sections, Central
Association of Science and Mathematics Teachers, November 26, 1904.
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following quotation being taken from an address by Vice-president
George A. Cowen of Simmons College: “Fifteen years ago at
Phillips Academy, Andover, Professor Graves performed the exper-
iments while the boys looked and wondered. Now they do and
know. With the change came the necessary demand for accurate
measurement, but measurements of length and weight and force are
of no use unless properly correlated. This is mathematics.
Mathematics, it is affirmed, has made physics unpopular. Language
without words would be about as sensible as physics without math-
ematics.”

The methods that are being employed are illustrated by the fol-
lowing: Professor G. W. Greenwood, of McKendree College,
writes: “We are trying here to bring mathernatics and physics into
closer relationship by showing that algebra is a means of expressing
precise relations among magnitudes which may be measured and of
expressing relations deduced from given relations. I am using en-
tirely new definitions with these ends in view, and so far as I know
they differ widely from the text books. We take any verbal statement
from physics or arithmetic and then state it in the form of an
equation. From equations we state verbal equivalents or rules. We
leave entirely in the physics department the experiments from which
the laws are deduced, and so far we are making good progress.”

From Professor Newhall of the Shattuck School we have the
following: “The courses are conducted entirely separate, but the de-
partment of mathematics aims to teach such subjects as the metric
system, ratio and proportion, variation, graph, a knowledge of the
trigonometric functions, etc., before they shall be needed in the
study of the sciences. The instructor in physics has written out for
me a full list of the formulas, equations and geometrical proofs
which occur in a year’s work in physics, and I see that these identi-
cal equations and proofs are studied in the algebra and geometry. In
return he emphasizes such subjects as the parallelogram of forces,
direct and inverse variation, etc.” Mr. Newhall also writes that they
have a close correlation between the mechanical drawing and mathe-
matics. Further he states: “I do not think I like the idea of correlating
the two subjects to such an extent that either loses its identity.”

Professor H. E. Cobb of Lewis Institute, in outlining the inter-
esting work he is doing, says: “My experience is no doubt of value
in this, that I am laboring under the difficulties that most teachers
encounter when they try to get out of the beaten path. While I am
free to use any method I choose in my classroom, at the close of
each quarter and often during the quarter, students are transferred to
or from my section. Hence I must go over the ground with the new
ones, and always have my students in such shape that they can do
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work with other sections. In the first year algebra I use the balances
and levers to illustrate the equation and the operations with positive
and negative numbers. Squared paper is used in the solution of
problems and graphical work. During the last two quarters one day a
week is given to concrete geometry, measureéments being made in
the metric and English systems, and constructions with compasses
and ruler. In first year geometry great emphasis is laid on doing and
on numerical computation. During the last quarter elements of
trigonometry are introduced and triangles are solved, and computa-
tions of heights and distances made with the squared paper instead
of tables of natural functions. In geometry various blocks are mea-
sured with both ruler and calipers, which are weighed and the vol-
ume and specific gravity computed.”

Professor Donecker of the Richard T. Crane Manual Training
High School of Chicago has dev1sed a balance which he calls the
“Algebraic Equation Balance,” which serves the purpose of making
it possible to present equations in concrete form. The pnmary pur-
pose is to give a concrete idea of negative numbers. It can also be
used as a basis for problems on levers. I suggest that every mathe-
matical teacher investigate this apparatus.

Professor Risley of the Mathematical Department of Armour
Institute of Technology outlines their work as follows: “We have
gotten outside problems from the work in Physics and used them in
our class work. We have not discarded a text, as some have advo-
cated. In those subjects requiring mathematical statements and cal-
culations, our instructors agree that the difficulty is fundamentally
one of arithmetic. The mistakes are made in adding, etc., and in
getting the decimal point in the right place; in handling ordinary
common fractions and in placing the work in a clear logical order. In
our plane geometry practically all the work is original. This is
somewhat slow at first, and usually a little discouraging to the stu-
dent for about six weeks. After that, if the instructor has been suf-
ficiently strenuous in exacting the niceties of geometrical logic and
clearness, there is a most pieasant outlook ahead. In our geometrical
notebook we have a great deal of construction work illustrated by
the following problems: Draw 5 lines of different lengths, measure
them in centimeters and inches, find the ratio of the length of an inch
to that of a centimeter in each case; also the ratio of the length of a
centimeter to that of an inch in each case. Obtain the mean ratios.
Why do your values differ from the true ratios? As another example:
Draw 5 different angles, acute, obtuse and reflex. Measure each
three times and obtain the mean. Describe the process of measure-
ment carefully. The student will not study construction as such from
his text this term, the idea being to have him become thoroughly
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familiar with his inch and centimeter rules, his compasses and
dividers, protractor, etc. Later he will consider the parallelogram of
forces from data obtained in actual experiments. One primary object
in our work is the development of the initiative, and we hold that
analysis bears an important place in this development.”

Dean Raymond of the Department of Physics writes as follows:
“We have found at Armour Institute of Technology that in attempt-
inz to do specified physics experiments with our mathematics
classes, we sacrificed the forma! drill in the manipulation of algebra
expressions. This is too important a part of the training of an engi-
neer to be studied in any but a rigid manner. In place of the ‘booky’
problems that are found in almost every text, we have supplied a
long list of problems from physics, especially mechanics, etc. The
law is stated and the student has problems to solve that arise from
this law. The interest of the student is assured at the outset, knowing
that he will later meet with the principle in his engineering work.
Besides the interest of the student, he is being drilled to manipulate
those forms which will make the study of the subject of mechanics
or physics very much easier when taken up. Complaints were fre-
quent from those teaching the applied mathematics that the men
could not handle the mathematics of the subject after having made
the application. The list of problems was written after scanning the
books used in the engineering classes, in hopes that the men might
be better trained to handle the work. From results attained thus far,
we feel that the work is proving very beneficial.”

It would be much easier for Professor Comstock or Professor
Plant, who have so successfully and untiringly pushed the work of
correlation at Bradley Institute, to outline their work for you and
explain exactly how and why it was begun. From the point of view
of the physicist, it commenced some six years ago when the mathe-
matics department discarded the algebras then in use and made out in
outline one which used extensively the graph and introduced a large
number of physical problems. These problems were selected in what
appears to me now an almost ideal manner. The physics department
furnished a list of all the typical equations used in elementary
physics and later a series of problems which covered every type of
equation. The mathematical department then selected from these and
added many others which appeared especially well adapted to
students in elementary algebra. From physical problems to simple
apparatus, such as balance, lever, thermometer, etc., was only a
step, and the logical outcome of the introduction of such work. This
work has been developed along this line until it seems to me, as ¥
come in contact with the students taking the course, to be very suc-
cessful.
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In geometry the students were first given a few plane figures to
find their dimensions in both the English and metric systems.
Various geometric problems that had a more or less direct bearing on
the physics were introduced.

Two years ago the mathemacical laboratory for work in concrete
geometry was established. This simply meant the better systematiz-
ing of the experiments already given and the addition of many more.
Some of these experiments were taken directly from the physics,
while others were original and not ordinarily given at the present
time in the elementary physics. Great care was taken in the selection
of these experiments to include only in general those that have a ge-
ometrical proof, thus enabling the student to obtain a very clear
comprehension of the practical applications of his geometry. The
second object that was aimed at was the selection of experiments
which required only the simplest form of apparatus. Those which do
not fulfill this latter condition are, in my opinion, absolutely
worthless for elementary mathematics. As soon as the apparatus be-
comes sufficiently complicated to need explanation by the instructor,
the student has his mind turned from the essentials of the experiment
to the apparatus. It is not the aim of this laboratory course to teach
the student manipulation of complicated apparatus.

It was early recognized that it would be impossible to have a
close correlation between the physics and mathematics unless the
instructors were familiar with the work of both departments. For
this reason one mathematical instructor taught three-fourths of his
time in mathematics and one-fourth in physics, while one of the
physics instructors gave three-fourths of his time to physics and
one-fourth to mathematics, i.e., the physics instructor had one class
in geometry or algebra and the rest of his time in physics. This also
furnished a bond of interest between the two departments, in that
each knew the aims and objects of the other.

The results obtained from this arrangement cannot be overesti-
mated. It seems to me doubtful if as much could have been ac-
complished in any other way; at least it would have required a much
longer time. Another feature which contributed materially to the
success of this correlation was the introduction three years ago of a
course in physiography, which is taken by all students during the
first quarter of the first year. This course, given under the direction
of the physics department, is made an introductory course in
science, so that the student is more or less familiar with the words
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and phrases that he will be required to use in his problems in algebra
and geometry.2

Thus we have outlined briefly the work of correlation as it is
being carried on in some schools. There are many others where the
work is probably as far advanced as in the cases noted, but I was
unable to obtain accurate and specific information concerning them.
A pertinent question would be: What assistance has this been to
physics? The student is familiar with many of the words like veloc-
ity, acceleration, force, centigrade, etc., the metric system in detail,
and the graph. He can solve all algebraic equations occurring in
physics with numerical problems under each. The working of ex-
amples in the composition and resolution of forces with the
trigonometric functions--sine, cosine and tangent--is but a continua-
tion of his work in geometry. The laws of the lever, reflection and
refraction of light, of the inclined plane, and the relation between the
Centigrade and Fahrenheit thermometers come as easy as the sim-
plest equation in algebra. From his laboratory work he is familiar
with the method of doing accurate laboratory work. He knows the
degree of accuracy which he may expect to obtain, i.e., a clear rela-
tion between the theory and practice. He is also familiar with the
source of error and form of laboratory reports, and he knows the
best methods of computation.

There are, of course, many others; but beside all these which we
can state more or less definitely, he possesses the power to use his
mathematics to a degree that is almost unknown to students who
have not had this work.

Another question which is often asked and which is certainly
much to the point is: Do these students know their pure mathematics
as well as students who have had only the abstract mathematics?
This is, of course, a very difficult question to answer. I have made
an attempt to find an answer in this way. I have in my classes not
only students who have taken this work, but also students who have
come to us from first-class high schools where I know that the
preparation in pure mathematics is very good. I have sometimes
asked for the proof of some geometrical theorem that we have been
using, as for instance the Pythagorean theorem. I have never yet
found a student with only the abstract preparation who would at-
tempt to demonstrate one of these off-hand, while I have found that

2These experiments were puvlished in full in a report of the committee on the
correlation of mathematics and physics in secondary schools made to this associ-
ation in 1903.
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a large number of the students who have had the concrete geometry
were able to give the demonstration.

While this cannot be considered in any sense a proof, it certainly
indicates to me that the student has lost none of his reasoning pow-
ers by taking up this applied work. That I am not the only teacher
who believes that the concrete work has added materially to the stu-
dent’s power to deal with mathematics is easily seen from the fol-
lowing: Professor Cobb of the mathematics department of Lewis
Institute, who has made decided progress in the correlation of
physics and mathematics, says: “I am thoroughly convinced that my
students are getting hold of mathematics in a way that is not possible
under the old formal method of teaching.” Again, to quote from
Professor P. B. Woodworth: “I take great pleasure in reporting
progress in the correlation work in mathematics and physics at
Lewis Institute. I have been more than pleased with the results as
they develop this year. The students who had the mathematical work
based upon actual measurements are much better prepared than those
who have had the same amount of abstract work in mathematics.
The work seems in some way to have developed a thinking
mathematical method which largely prevents those mathematical
blunders which have been so exasperating to physics teachers. I also
think the attempt at precision measurement has increased the
students’ reverence for mathematics. The only ill effect I have ob-
served is that those who have not had the course given by Professor
Cobb are having a hard time to get in line.” Professor R. A. Milliken
of the University of Chicago quotes Mr. Lynde, instructor in
physics at the School of Education, as saying that the students who
took the concrete mathematics and have now entered physics take to
the graph like ducks to water; beyond this he is not prepared to make
a report at present, as this is only the second year that the physics
courses at the School of Education have been in operation.

From the statements of various persons quoted in this paper, and
from many others which I have obtained, it seems that correlation
does not mean that either physics or algebra or geometry is to be
eliminated, but, as Dr. Milliken very aptly expresses it, “you can
teach all the physics you want in algebra and geometry and then
there will be plenty left for us.”

It appears that the correlation is an accomplished fact in so far
that problems from physics are made the basis of the original work
in algebra and that wherever this work is carried on we find both the
mathematics and physics teachers enthusiastic concerning the
progress of the student in his power not only to use his mathemat-
ics, but he seems to possess a clearer and a more logical and a more
correct idea of the abstract mathematics. It would seem that to attain




the highest degree of efficiency in this work, not only must the
teacher of mathematics be a student of physics, but if possible he
should teach physics for a time in order that he may better compre-
hend the needs of the physics teacher and at the same time study
carefully in all ways the effect that the correlation is having on the
student’s work.

44

40




5

Correlation of Mathematics and
Science Teaching

David E. Kullman
University of Kansas

(Vol. LXVI No.7 October, 1966)

Mathematics has been called “the queen and servant of science,”
and it is true that, both historically and in our contemporary situa-
tion, mathematics and the natural sciences are very closely related.
The giants of mathematical thought often have been scientists of the
first magnitude, and a certain degree of reciprocity exists between
even the purest mathematics and the most practical science.

Mathematics is already the language of the physical scientist, and
it is becoming rapidly an important language for the biological and
social scientist as well. But if science depends on mathematics for
the formulation and solution of many of its problems, mathematics
also must acknowledge that it acquires meaning as it is used to de-
scribe the physical world. Moreover, many significant advances in
mathematics have come as the result of attempts to solve complex
physical problems.

Since mathematics and natural science are related intrinsically to
each other, it would seem that the relationship should be spelled out
clearly in the teaching of these subjects. Indeed it often has been
pointed out by mathematicians, scientists, and educators that we
should review our present curricula in mathematics and science,
with a view toward better coordination of instruction in both areas.
This type of coordination has been advocated in the United States
for more than a half-century. Yet it is still not unusual to hear com-
plaints from science teachers that their students cannot apply mathe-
matics in the solution of physical problems. At the same time, the
mathematics teachers reply that they cannot teach “scientific applica-




tions” in their mathematics classes because their students do not un-
derstand the basic principles of science.

Perhaps a review of the historical aspects of this problem and
attempts to overcome it will shed some light on the path toward a
solution in the future.

The need for greater correlation of mathematics and science
teaching was expressed as early as 1901 by John Perry, a professor
of mathematics at the Royal College of Science, London. In an ad-
dress on “Teaching of Mathematics,” given at the Glasgow meeting
of the British Association for the Advancement of Science, Perry
attacked what he felt was a “system of teaching boys elementary
mathematics as if they were all going to be pure mathematicians.”
He also called for a laboratory approach to the teaching of mathemat-
ics.!

This latter suggestion was taken up by E. H. Moore, then a pro-
fessor of mathematics at the University of Chicago and president of
the American Mathematical Society. In his presidential address, de-
livered in December, 1902, he again called for a laboratory system
of instruction in both mathematics and physics. He further asked
whether it would be possible “to arrange the algebra, geometry, and
physics of the secondary school into a thoroughly coherent four
years’ course.””2

Other educators in the United States were interested also in relat-
ing science and mathematics instruction to each other. In April,
1903, the Central Association of Science and Mathematics Teachers
was founded, with one of its objectives as set forth in the constitu-
tion being “to obtain a better correlation of [mathematics and
science] to each other and to the other subjects of the curriculum.””
Many of the articles in early issues of School Science and
Mathematics were concerned with the correlation of mathematics and
the sciences.

Some other indications of the widespread interest on this prob-
lem were the beginnings of experiments involving various degrees
of correlation between mathematics and science. Some authors of
textbooks also began to include problems from the physical
sciences.

1Mock, Gordon D. “The Perry Movement.” The Mathematics Teacher, 56:
130-133 (March, 1963).

2Moore, E. H. “On the Foundations of Mathematics.” Science, 17: 401416
(March 13, 1903)

3Central Association of Science and Mathematics Teachers. Report of the
Committee on the Correlation of Mathematics and Physics in the Secondary
Schools. 1903




It seemed as though real progress would be made toward the in-
tegration of science and mathematics. However, one unfavorable re-
action to Professor Moore’s view was noted by David Eugene Smith
of Teacher’s College in New York City. He reported that the eastern
part of the United States was content to let the Central States con-
tinue their experiments, but that the East did not support any efforts
to introduce physical experiments into mathematics classes; for “the
consensu. Jf opinion is that the number of applications of algebra to
physics, for example, is exceedingly small.” Smith further stated
that the East would make every effort to “get the pupils to walk in
the domain of pure mathematics.”

In 1923 the National Committee on Mathematical Requirements
of the Mathematical Association of America, recommended several
plans for a Mathematical Curriculum.’ It is significant, however,
that none of these plans included suggestions for the correlation of
mathematics and science. By 1934, E. R. Breslich, of the
University of Chicago, could say, “It is unfortunate that the correla-
tion of science and mathematics, which had such a promising be-
ginning, did not continue to make the progress expected by those
who advocated the plan. Indeed, the ground made has been almost
lost.”®

After 1935 interest in the correlation of mathematics and science
teaching was renewed. When the Curriculum Committee of the
Central Association published a “paper panel” on “Desirable
Curriculum Adjustments in Science and Mathematics” in 1941, the
writers on this panel expressed a concern for the greater use of
mathematics in science courses and the use of problems from
science in the mathematics classroom.” The following year the
National Council of Teachers of Mathematics published its 17th
Yearbook, A Source Book of Mathematical Applications
Significantly, a large percentage of these applications were drawn
from the physical sciences.®

4Smith, D. E. “Movements in Mathematical Teaching.” School Science and
Mathematics, 5: 135-139 (March, 1905.)

SNational Committee on Mathematical Requirements, The Reorganization of
Mathematics in Secondary Education. Boston, Houghton Mifflin Co., 1923.
5Breslich, E. R. “Coordinating the Activities of the Departments of Science and
Mathematics in Secondary Schools.” School Science and Mathematics, 34: 144-
157 (February, 1934).

TCarnahan, Walter H. “Some Desirable Curriculum Adjustments in Science and
Mathematics.” School Science and Mathematics, 41: 103-114 (February, 1941).
8National Council of Teachers of Mathematics. Seventeenth Yearbook: A
Sourcebook of Mathematical Applications. Washington, The Council, 1942.
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In recent years many articles have appeared in educational jour-
nals which emphasize the need for physical applications to promote
better understanding of mathematics. A typical viewpoint is ex-
pressed by the following quotation: “Mathematics as it originates in
the curriculum is taught too frequently as symbolism without rein-
forcing by experience. Historically we have become accustomed to
teaching mathematics without a laboratory where some of the badly
needed experience in this subject could be acquired.... Unless a
definite effort is made to assist [the student] in applying mathematics
to science, he will continue to fzil to solve equations and formulas
which arise in the science classroom when he has had little trouble in
solving the same basic problems in the regular mathematics class-
room.”

One problem which always arises in attempts to correlaie math-
ematics and science instruction is that of the order in which topics
are taught. Traditionally, the topics which might best be taught to-
gether have been taught at quite different times in the instructional
sequence. For example, scientific notation is used very early in the
physics or chemistry course, but it is usually not taught in a mathe-
matics class until fairly late in the second year of algebra. To over-
come this incompatibility will require some major changes in the
order of teaching topics, beginning at the elementary school level.

One such attempt is now being made by the Minnesota
Mathematics and Science Teaching Project (MINNEMAST). The
Minnemath center at the University of Minnesota is working on a
combined math-science curriculum for grades K-9. They have al-
ready prepared some units for the primary grades in which children
perform experiments leading to scientific concepts and then learn the
mathematics needed to express these concepts.

On the junior high school level, the School Mathematics Study
Group has published three units entitled Mathematics Through
Science, and a fourth unit entitled Mathematics and Living Things.
These units are intended for use in the mathematics classroom, and
although they use physical and biological experiments to motivate
mathematical ideas, their primary purpose is to teach mathematics.

A survey of recent volumes of journals in science and mathemat-
ics education shows many articles concerned with the relationship
between science and mathematics teaching, both generally and in
specific applications of mathematics to science. A few such refer-
ences are listed at the end of this article.

9Hall, Arthur J. “Relations between Science and Mathematics in the Secondary
School.” National Association of Secondary School Principals Bulletin, 37:
191: 92-95 (January, 1953).
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The above programs may be the beginning of a more unified
math-science curriculum, but there is still much room for experimen-
tation at all levels. Much of this experimentation could be done by
classroom teachers who are willing to break away from the com-
partmentalized curriculum which is presently found in so many of
our schools. When educators stop thinking of algebra, geometry,
trigonometry, biology, chemistry, and physics as separate entities
and begin to see natural science and mathematics as interwoven dis-
ciplines, they may improve the “transfer” of concepts between the
mathematics and science classrooms.

There may be some dissention on the part of “‘pure” mathemati-
cians who will rightly claim that mathematics can be learned apart
from its applications, and that these applications should never be al-
lowed to obscure the mathematical structure itself. One answer to
this objection is that, although mathematics can exist as a completely
isolated science, it is not in the best interests of elementary and sec-
ondary education to present it in this way. A large number of stu-
dents will be using their mathematics primarily as a tool in some
other field. The responsibility of both science teachers and mathe-
matics teachers is to help them to see the possibilities of using math-
ematics in describing the “real” world. This can best be done when
the interrelationships between mathematics and science are brought
out in both classrooms.
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6

Changing Curriculum Patterns in
Science, Mathematics and Social
Studies

David H. Ost
California State College, Bakersfield
(Vol. LXXV No. 1 January, 1975)

Introduction:

Due to the nature of cultural evolution, curriculum development
must be an ongoing function of the educator. There are always in-
dividuals who see the need for educational reconstruction. John
Dewey wrote some 50 years ago “if there is a special need of educa-
tional reconstruction at the present time . . . it is because of the thor-
ough-going change in social life of accompanying the advance of
science, the industrial revolution, and the development of democ-
racy.”

Any change is at least in part a reflection of the needs of society.
The current move towards the fusing of disciplines, conceptual
schemes, or instructional procedures is such a response. For several
years it has been recognized that instruction in disciplines for the
sake of increasing content competencies is insufficient. The national
curricular movement of the 1960’s, with their stated objectives to in-
crease the scientific manpower, is no longer a vital force in our cur-
riculum movement. There is no longer the pressing national security
need, whether real or manufactured, for more scientists and engi-
neers. The pressure is ever-increasing to prepare a public which is
literate in the interactions of the science-technology-society complex.
This is in spite of reactionary activities pressing for skill develop-
ment, short-range limited objectives, and job orientation.

There are a variety of individual projects and group efforts put
forth in an attempt to modify curricula as a response to the changing
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society needs. Not unexpectedly, each group has its favorite terms
which are in need of operational definitions. Rubrics such as inter-
disciplinary, unified, integrated, correlated, coordinated and com-
prehensive problem solving need to be clarified. Operational defini-
tions will facilitate communication. No doubt there are other labels
currently in favor by the current generation of curriculum develop-
ers, but these terms seem to be most prevalent in the literature.

Interdisciplinary:

Interdisciplinary is generally appli=d to courses of study which
merge for purposes of instructional expediency two or more bodies
of knowledge. The results are courses with titles such as “Organic
Chemistry, Pesticide UUse and Residue Control,” “An
Interdisciplinary Approach to Environment Improvement,” or “The
Chemistry of Drug Use and Abuse.” Such courses are frequently in
response to student demand and thus reflect the contemporary soci-
etal concern. Examples of such courses are cited in Science for
Society (1). It is not unusual for such courses to be “team taught.”
This is an indication that the instructors have not conceptually inte-
grated the content from their respective disciplines and consequently
“team.” Unfortunately, the frequent result is that the instructors con-
centrate on their separate areas of expertise, producing two or more
minicourses with the burden placed upon the student to interrelate
the information. A theoretical basis for the interdisciplinary curricu-
lum, instruction, and/or program is generally lacking.

Unified:

The term unified is usually applied only to courses or programs
within which unifying themes or concepts can be developed. Most
frequently this approach is applied to the various disciplines of the
natural and physical sciences. Unified science takes the major
themes and builds conceptually upon or through them. It has been
stated that all the unified science projects are constructed around
concepts, principles and processes that permeate all science (2). An
example might be the concept of energy, which would be studied
from the biological, physical, chemical and geological dimensions.

The unified approach appears to have a firm theoretical basis for
its development. Science is treated as a discipline in and of itself and
is therefore not conceptually divided into a va.iety of disciplines.
Instructional materials are patterned in a manner which reduces re-
dundancies and thereby increases efficiency. In addition, the total
content of science is perhaps better sequenced in a manner more
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logical and consonant with the student’s ability to understand.
Persons committed to this approach have formed a semi-structured
organization, the Federation for Unified Science Education (FUSE).

Integrated:

The term integrated most often is used in connection with math-
ematics and science, although in recent years other disciplines are
being included under the umbrella of integration. Integrated pro-
grams are perhaps really interdisciplinary, but at a more sophisti-
cated level. For example, programs which are classified as inte-
grated science and mathematics usually involve the teaching of ap-
plied mathematics for the solving of scientific problems. It is fre-
quently found that one or two disciplines, usually chemistry and
physics, employ mathematics to raise ic the level of cognition certain
concepts in science. In such programs, mathematics is relegated in a
large part to a service function. The mathematics may be taught sep-
arately, but conceptually it is integrated into the curricula of the
sciences, which may or may not be unified.

Correlated:

Correlated is a term used to describe attempts made to relate
skills or concepts from one discipline to the other. Most of the dis-
ciplines retain a separate identity. The strategy is sometimes to relate
skills or concepts from one discipline to the other, sometimes to re-
late the basic structure of the disciplines. For example, at the college
level a course in statistics may utilize problems for biology, physics
or chemistry. Or at the high schcol level the mathematics teacher
may accommodate to the needs of the physics students. The usual
rationale behind such a program is to increase the relevancy to the
student or to simply provide appropriate skills when needed.

The Report of the Cambridge Conference on the Correlation of
Science and Mathematics in the Schools (3) clearly suggests that
mathematics is taught in an irrelevant manner. The report suggests
that the teaching of mathematics cou.d retain its integrity and be
made more meaningful by being correlated with other disciplines. In
correlated programs, mathematics makes use of everyday problems,
modeling conditional probability, and other factors related to the
students’ environment. Effort is made to apply the skills or concepts
developed in one discipline to another discipline. The theoretical ba-
sis is one of correlating skills and applied problems. The sequencing
of content is not of prime concern.
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Coordinated:

Coordinated programs are probably attempts to remove redun-
dancies. In pari, these types of programs may be the result of at-
tempts to unify or are transitory between traditional and unified pro-
grams. The coordinated programs may also focus on conceptual
schemes set in a traditional spiral curriculum with different courses
treating the materials with differing degrees of sophistication.
Textbook series for elementary school are frequently written endeav-
oring to coordinate the content conceptually as well as to coordinate
the material with intellectual development of the student.

At a less sophisticated level, individual instructors may have
gotten together to coordinate the content on two Or more Courses.
Usually such efforts are done for the purposes of efficiency and to
remove what are thought to be redundancies. “Core courses” in col-
lege curricula are examples of what might result.

The basic premise of coordination 1s to increase the efficiency of
instruction. An unfortunate side effect is the increased interdepen-
dency of the courses.

Comprehensive Problem Solving:

Large scale programs dealing with comprehensive problems are
just beginning. There are multitudes of materials which might be
classified as being congruent with this approach which are usually
based on the “unit concept.” Here the student defines a comprehen-
sive problem and is asked to apply various skills and knowledges
from the sciences, mathematics, and social sciences in an attempt to
optimize some solution. Problems are frequently drawn from current
social interests such as consumer research, community recreation,
and transportation. In the process of studying such a problem, the
student might consider costs, governmental involvement, water
usage of the area, projected needs, and other such related topics.
Data collected and the optimized solution might, in fact, be transmit-
ted to the proper authorities for action.

The strengths of this approach lie in the ability of the student to
enter completely into the problem. He is able to enter and exit at his
own level of competency. Specifically, the student requires no pre-
determined knowledge, but rather can either apply what knowledge
he has available to him or develop the new knowledge necessary to
solve the problem or to work towards a tentative solution of the
problem. Proponents of this approach suggest that it serves an addi-
tional function of helping the student make moral and ethical sense
out of his environment and the happenings in his surroundings (4).
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Some Implications:

Teacher education, whether it be pre-service or in-service, is a
major factor that must be faced realistically. Discipline-oriented in-
dividuals must be re-oriented if they are to successfully work with
unified curricula. Discipline-oriented college curricuia certainly are
ma;jor obstacles. There is evidence to suggest that colleges are also
moving to the types of programs described above. Perhaps the cur-
rent interdisciplinary movement called “structuralism” may unify, at
least methodologically, the various research disciplines. Such a
change would certainly have ramifications for college teaching and
teacher education.

It is really not significant what a program or an approach is
named. What is imporiant is what schools communicate to students.
It is obvious that today’s schools are in need of a great revitalization.
Any and all of the above approaches can be important factors for the
revitalization. As with any change in education, it can only be as
good as the changers: output is always a function of input.

Let us hope that those individuals who see the need for educa-
tional reconstruction push forward so that education can be in step
with the needs of society.
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Structuring Knowledge in
Mathematics and Science

Thomas J. Cooney
University of Georgia

Kenneth B. Henderson
University of Illinois
(Vol. LXXII No.5 May, 1972)

One of the goals of instruction is to help students formulate a con-
ceptual network which will render their knowledge of specifics more
useful. Such a structure should assist the student in recognizing the
interrelationships of concepts and principles and also in assimilating
newly acquired concepts and principles into his cognitive structure.

ile this goal may be regarded as obvious, it is not immedi-
ately apparent that teachers usually teach with the idea in mind of
helping students develop some kind of structure. Observations of
teachers, especially beginning teachers, reveal that teachers often
neglect the interrelationships between various concepts and princi-
ples. It is the purpose here to suggest a method by which teachers
can explicitly direct their students’ attention to meaningful relation-
ships in mathematics and science. It is assumed that if a teacher is
consciously aware of ways of organizing material into a desired
structure, he is better able to assist students in developing such a
structure.

CLASSIFYING

One of the fundamental abilities in learning mathematics and
science is the ability to classify according to some criteria. It is
through classification that we obtain much of our power in under-
standing what we learn. Classification allows us to form concepts,
transfer knowledge from one set of objects to another set of objects,
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and, in general, allows us to subsume much of our knowledge into
broader more inclusive categories. The power of classification lies in
the fact that whatever item is classified that item possesses those at-
tributes associated with the set to which it belongs.

The act of classifying occurs whenever an object is stated to be
an element of a particular set or whenever a set is declared to be a
superset of another set. The first situation will be called set member-

ship and the second set inclusion. For example, classifying V2 as an
irrational number or NaOH as a base are instances of set mem-
bership. This activity plays an important role in the classroom, for
now the student can associate properties of irrational numbers and
bases in these two objects respectively. In particular, the student

should realize that V2 can not be expressed as the ratio of two inte-
gers as can 3 1/7. Since NaOH is a base and bases are generally
caustic, feel slippery, neutralize acids, and cause litmus paper to turn
from red to blue, he can associate these same properties with sodium
hydroxide.

Set inclusion occurs when squares are noted to be rectangles, the
set of differentiable functions is a subset of the set of continuous
functions, sugars are carbohydrates, or in general when a superset
of a given set is stated. The importance of this type of classification
is essentially the same as that given for set membership. It provides
an organization to concepts that are learned and allows ong to asso-
ciate characteristics of the superset with the more restrictive subset.
For example, since carbohydrates are composed of carbon, hydro-
gen, and oxygen we can deduce the composition of sugars. Hence,
the student minimizes the amount of specific knowledge he must
memorize through a structure of the knowledge he has acquired.

The fact that the sSlutions to the equation x#-1=0 form a cyclic
group of order four under the operation of multiplication provides us
with information on how these four elements behave. If a student is
aware that the trigonometric functions are periodic functions this
facilitates his graphing of these functions.

ANALYSIS

Another important strategy that teachers can use in helping stu-
dents organize their thoughts is to assist them in analyzing a particu-
lar concept or set by breaking it down into its constituent parts--be
they subsets of the set or elements of the set. Giving subsets of the
referent set of a concept will be referred to as analysis, whereas the
listing of elements of a particular set will be called specifying.
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A chemistry teacher might use an analysis move by categorizing
the four general types of chemical reactions or by having students
realize that hydrocarbons consist of alkenes, alkynes, alkadienes,
and the aromatic hydrocarbons. The latter realization enables stu-
dents to associate the properties of hydrocarbons to the particular
kinds of hydrocarbons. An analysis can also help students consider
special cases of a generalization. Consider, for example, the general-
ization that the altitudes of a triangle are concurrent. If one partitions
the set of triangles into acute, right, and obtuse triangles, the gen-
eralization still holds for each of these types of triangles but the point
of concurrency lies inside, on, or outside the triangles respectively.

An analogous situation occurs in physics classes when a student
considers the generalization:

The sum of the forces acting in one direction equals the sum of the
Jorces acting in the opposite direction.

The student can then investigate the application of this principle
to the three types of levers. The structure provided here is that the
student need not learn three separate principles, one for each class of
lever, but rather one principle made applicable to three different sit-
uations by the use of analysis.

The same sort of structure can be provided by specifying, i.e.,
giving elements of a set. The listing of the elements may or may not
exhaust the set, but in any case a structure is provided by grouping
items of knowledge into a single set. Consider the set of ways of
proving that a quadrilateral is a parallelogram. Two of the elements
of this set are:

1. If the opposite sides of a quadrilateral are congruent, then the
quadrilateral is a parallelogram.

2. If the diagonals of a quadrilateral bisect each other, then the
quadrilateral is a parallelogram.

Specifying can help students organize techniques for performing
given tasks. For example, students can catalog various ways of
solving quadratic equations or the chemical reactions which produce
salts. Chemistry teachers can utilize this move by having students
learn some of the metallic sulfides, or a biology teacher might have
the students identify the organs of the body and their functions.
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CHARACTERIZATION

A logical move similar to analysis and specifying is the eliciting
of characteristics of an object. Mathematics teachers can have stu-
dents associate various properties of parallelograms and rectangles--
such as opposite sides parallel and diagonals bisect each other, etc.
Also those properties which differentiate rectangles from other paral-
lelograms can be given, viz., congruent diagonals and congruent
angles. This type of move could follow an analysis move. Once the
hydrocarbons have been analyzed into their different subgroupings--
alkines, alkynes, etc., the characteristics both common and unique
to these compounds can be discussed. For example, each of the sub-
stances is composed of the same two elements, hydrogen and car-
bon, however the groups differ with respect to their molecular
structure.

EXPLAINING

There are two different but related classroom activities which can
help students gain an understanding of the interrelationships of
principles in mathematics and science. The first, called justifying,
involves challenging an assertion whereupon the person challenged
is expected to provide facts and generalizations from which the
assertion follows. The assertion may be a singular statement or a
universal generalization. For example, a student may be asked to

explain why V2 is irrational, or to justify the claim that the arctic is a
desert. The justification for both of these claims would be predicated

in part, on definitional statements, €.g., what do we mean by V2,
irrational, and desert? However, while the mathematical assertion
could be justified solely in terms of postulated statements, the
seconc assertion requires some observations to establish its truth
claim.

A mathematics teacher may wish to have a student explain why
the diagonals of a rectangle bisect each other in terms of the principle
that the diagonals of a parallelogram bisect each other and the rela-
tionship between rectangles and parallelograms. A physics teacher
may wish to have a student validate the claim that the downward
motion of an object fired horizontally from a gun is the same as the
motion of a freely falling object. The student’s explanation may en-
tail Newton’s second law of motion and hence provide a link be-
tween this law and the asserted claim.

Sometimes a teacher may ask for a justification of a certain pro-
cedure, such as why constructing congruent corresponding angles
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with two lines and a transversal produces parallel lines. One way to
justify such a procedure is to show that the prescriptions involved
are predicated on established generalizations. In this case the proce-
dure is based upon the theorem:

If two lines form congruent corresponding angles with a transversal,
then the lines are parallel.

IMPLICATING

The second activity, called implicating, utilizes this same sort of
structure by giving students certain conditions and asking them to
formulate the conclusion following from these conditions. For ex-
ample, from the fact that a parallelogram is inscribed in a circle one
can conclude that the parallelogram is a rectangle. Another instance
of this activity might occur in a science class in the following discus-
sion:

T. If a warm moist mass of air meets a polar mass of air so as to
form an indentation in the cold front, what weather condition would
we expect to result?

S: It would be the beginning of a cyclonic storm.

The conditions that are set forth are the meeting of the two air
masses and the indentation formed by the warm air pushing into the
cold air mass. The conclusion which follows is so stated by the stu-
dent and thus provides an organization between the given weather
conditions and the antiicipated resulting climatic conditions.

ABSTRACTING AND GENERALIZING

Discovery lessons also provide students with the opportunity to
internalize and structure their knowledge. The essence of such
lessons is abstracting and generalizing which are the upshots of the
students’ probing, questioning and exploring hypotheses. If teach-
ers are to be effective in designing and using discovery techniques,
then it is essential that they understand the activities of abstracting
and generalizing. Quite simply, abstracting is the realization of simi-
larities amid differences. That is, when considering a set of exem-
plars, abstracting involves the recognition of those properties which
are common to all of the exemplars. Consider, for example, the con-
cept of prime numbers. A possible strategy in teaching this concept
is to present to the students a sequence of examples and nonexam-
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ples of this concept, e.g., 12, 8, 7, 10, 2, and 11, and ask the stu-
dents to form rectangular arrays of cots representing the given num-
bers. The student realizes, it is hoped, that the only rectangular ar-
rays that can be made to represent 7, 2, and 11 are 1x7, 1x2, and
1x11. That is, the student abstracts that property which is common
to prime numbers, viz., that the only positive factors of a prime
number are 1 and the number itself.

Generalizing involves two cognitions. The first is a statement
about a particular set of objects and the second is a statement about a
superset of the first set. For example, students could be given three
objects of different composition and do an experiment with these
objects involving Archimedes’ principle. The students then discover
that when each of the three objects was submerged in water individ-
ually, the apparent loss of weight of each object was equivalent to
the weight of the water displaced. Now the students might general-
ize and form the conjecture that this phenomenon is true for any ob-
ject submerged in water, not just the three specific objects examined.
The students may also wish, further, to generalize from water to any
liquid. While the latter conjecture would be correct and does repre-
sent a broader extensive of Archimedes’ Principle than was origi-
nally formed by the students, care must be taken not to have stu-
dents generalize (in the sense of proclaiming a truth not just the ut-
terance of a conjecture) in the absence of data. Mathematics students
may find that 12+1+41, 22+2+41, 32+3+41 all represent prime
numbers and hence generalize that all numbers of the form n?+n+41
are prime when in fact they are not (n=multiples of 41 yields num-
bers that are not prime). Teachers can help students avoid making
incorrect generalizations by carefully selecting the sample to be ex-
amined, making sure the sample is truly representative of the more
inclusive set about which the students are to make their discovery,
and encouraging the students to seek counterexamples.

CONCLUSIONS

Discussed above are activities which teachers can utilize in their
classroom to assist students in structuring their knowledge. Many
teachers are already aware of these strategies, at least on a nonverbal
basis. Since one of the emphases of curriculum movements in math-
ematics and science in the last decade has been to produce materials
which help students in seeing the overall structure of the subject
matter rather than viewing the particular items of knowledge within
the subject as ends in themselves, it behooves teachers to utilize
teaching strategies which maximize the understandings of the
interrclationships present in knowledge which are exhibited in these




curriculum materials. One can conjecture that, should mathematics
and science teachers help students structure their knowledge, the
student himself may develop strategies for organizing his knowledge
in other subjects. It is a researchable conjecture.
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Indeed, one drastic recommendation for the solution of the
problem of mathematical difficulties in high school science has
been to demathematize the science courses by making them
essentially informational. Most science teachers, however, feel
that the study of science is as much one of mathematical
relationships as of accumulating a body of facts and information,
and that high school science courses freed from mathematics are
not the best science preparation for pupils who expect to
continue the study of science.

E. R. Breslich, 1936

[1{. Science and

Mathematics in
Secondary
Education

Any physics course, be it academic or practical, must be based on nature's
physical laws and phenomena--and these laws and phenomena are
mathematical. We physics teachers have the responsibility of showing our
students the importance of quantitative reasoning, experimentation, and
observation in trying to understand nature’s physical phenomena. If we only
give students an appreciation for the physical world as it ‘mathematically and
quantitatively’ exists, we will at least have helped to prepare them for their
science-centered world.

R. E. Carpenter, 1962

Due to the contemporary emphasis in secondary mathematics on logical
foundations and structure, there appears to be less likelihood than ever of
introducing a significant amount of science material into mathematics
courses. If so, this would be most unfortunate for both subjects,
inasmuch as on the highest levels, modern science leans heavily on "pure”
mathematics of the most abstract nature.

W. L. Schaaf, 1965
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Integration of Secondary School
Mathematics and Science!

E. R. Breslich
University of Chicago
(Vol. XXXVI No.1 January, 1936)

Historical statement of the problem: The problem of inte-
grating mathematics and science is not new. As far back as thirty-
five years ago plans have been suggested for establishing close rela-
tionships between the two fields. At that time it was hoped thereby
to decrease or eliminate many of the difficulties encountered by the
pupils in the study of mathematics and to attain more satisfactory re-
sults. Perry of England and Moore of the University of Chicago ex-
pressed the conviction that this could be brought about by placing
greater emphasis in teaching on the practical application of mathe-
matics, particularly by teaching mathematics in continual relation to
problems of physics, chemistry and engineering.

The suggestions of these leaders were enthusiastically received
by teachers cf high school mathematics and also by teachers of the
high school sciences. Historically the development of a great deal of
mathematics grew out of the needs of the sciences. This fact made it
seem logical that if some of the experiments usually performed in the
science laboratory were performed in mathematics classes in such a
way as to lead to discussions and formulations of the underlying
mathematical problems and principles, the teaching of mathematics
could thereby be greatly improved.

A striking indication of the widespread interest of the importance
of the problem is the formation of the Central Association of Science
and Mathematics Teachers with School Science and Mathematics as
its official publication. One of the major purposes of the association

1 An address given at the Conference of Administrative Officers of Public and
Private Schools, The University of Chicago, July, 1935.
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was to find and establish legitimate contacts between the mathemati-
cal subjects and the sciences. It was hoped that the constant training
which the pupil derives from applying mathematics to problems in
science would increase his mathematical power and that his interest
in mathematics would grow with the opportunities of using it in
other school subjects. Indeed, some of the leaders of the movement
were advocating that algebra, geometry and physics be organized
into one coherent course. If possible this course was to be taught by
the same teacher or at least by two teachers who were in sympathy
with the 1deas of correlation.

It must be admitted that these expectations have not been real-
ized. The record shows that several committees have reported on
ways of correlating science and mathematics, that the topic was dis-
cussed in the yearly meetings of the Central Association of Science
and Mathematics Teachers, and that some progressive teachers and
schools developed integrated courses which have been reported in
School Science and Mathematics. Furthermore, writers of textbooks
were quick to include among the verbal problems in algebra applica-
tions taken from the fields of physics and chemistry. Nevertheless,
the movement did not gain widespread endorsement. It is significant
that in 1923 the National Committee on Mathematical Requirements,
which recommended several plans for a mathematical curriculum,
failed to include in any of them suggestions as to the correlation of
mathematics and science.

The foregomg historical sketch might give the impression that
integration of science and mathematics is a closed issue and that it is
no longer to be taken seriously as a plan of organization of materi-
als. It is not intended to discourage interest in the plan. It does
show, however, that great difficulties have to be overcome before
success in the solution of the problem may be assured. The problem
is much more difficult than that of the correlation of the various
mathematical subjects. The soundness of that movement has never
been questioned. Yet its progress has been very slow. Indeed, the
movement might have failed had it not received new impetus from
the junior high school movement, from the growing tendency to-
ward integrated courses in the colleges, from the general educational
movement toward integration of high school subjects and compre-
hensive examinations, and recently from the College Entrance
Examination Board.

It is possible that the causes contributing to the failures of the
early attempts to integrate mathematics and science do not operate at
the present time. The attempts were made during a period of high
specialization and departmental organization when few teachers of
mathematics were qualified to teach another subject. Furthermore,
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the plan of including among the verbal problems of algebra a num-
ber of exercises on applications to science failed because detailed
explanations of the situations and of the new science concepts were
usually lacking. Thus, the science problems made little or no contri-
bution to the teaching of mathematics. On the other hand, they ac-
tually added to the difficulty of algebra. The mathematical training
derived from such problems was necessarily very small.

The mathematical needs of pupils taking courses in
high school science: The extent to which high school mathemat-
ics and science offer possibilities for integration may be seen from a
number of studies that have been made during the last fifteen years.
These studies were usually made by science teachers who undertook
to determine the mathematics actually used in high school physics
and chemistry. The detailed findings of most of the studies have
been reported in School Science and Mathematics. As a rule the in-
vestigators employed the method of analyzing textbooks in physics
and chemistry. They listed the mathematical processes and principles
which they found. Other investigators went further and worked out
all the problems that involved mathematical manipulation. Records
were thus obtained of the specific operations and skills required of
the pupils who were to solve the problems. A third method of ob-
taining the required information was to analyze the notebooks and
other written work of the pupils.

The studies disclose two interesting facts. The mathematics in-
volved in high school physics and chemistry are of a much simpler
type than most of the mathematics presented in courses in algebra
and geometry, and all of the mathematics required in science are or-
dinarily taught in these courses. Anyone interested in the detailed
findings may obtain them from the published reports of the investi-
gators. For the present it is sufficient to summarize them briefly as
arithmetical, algebraic, geometric, and trigonometric. Thus, a thor-
ough knowledge of arithmetic is required. Since high schools, as a
rule, do not and probably should not offer courses in arithmetical
computation, respensibility for this type of training should rest with
the science teachers fully as much as with the teacher of mathemat-
ics. Indeed, better opportunities for teaching arithmetic are offered in
science courses than in the regular mathematics courses. The train-
ing in arithmetic should aim to develop: proficiency in the fun-
damental operations with integers, common fractions, and decimal
fractions; knowledge of percentage; ability to use ratios and propor-
tions; knowledge of the metric system and of other standard units of
measure; ability to use and to interpret numerical tables; ability to
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employ the type of reasoning used in solving verbal problems; and
skill in solving such problems.

The algebra used in high school science comprises ability to
choose and employ good symbolic notation; ability to make substi-
tutions in formulas, to evaluate formulas, and to solve formulas for
specific required literal numbers; a knowledge of the laws of ratio
and proportion; direct and inverse variation; logarithmic computa-
tion; signed numbers, and positive and negative exponents; ability to
solve linear equations in one or two unknowns with integral or with
fractional coefficients; ability to solve simple quadratic equations;
ability to interpret relationships in formulas and equations; and abil-
ity to solve verbal problems by use of equations and formulas.

The methods of investigation make it impossible to discover the
informaticnal type. The pupil should be able to make simple dia-
grams and geometric drawings, including scale drawings; to read
and interpret drawings; and to make and interpret graphs. A knowl-
edge of the basic geometric concepts also is required. Acquaintance
with the fundamental geometric constructions and with about a
dozen geometric theorems is all the investigations disclosed.

The trigonometry of high school science seems to consist of a
knowledge of the meaning of the trigonometric ratios and of the
fundamental identities by which they are related to each other.

Determination of the mathematics required in the
science course in a particular school: The feregoing sum-
mary of the studies aiming to determine the mathematics used in
high school science gives only an idea of what is generally required.
Before an attempt is made to integrate the two subjects in a particular
school, a careful survey should be made of the mathematical needs
in the specific science courses offered in the school. The method
used by the department of mathematics of the University High
School illustrates how this may be done. Mr. G. E. Hawkins, one
of the instructors, has examined the materials of the physical science
and chemistry courses and the problems assigned to the pupils. Each
unit of the course was carefully analyzed and the required mathemat-
ical skills were recorded in the order in which they occur in the
course and in the classroom. He listed typical problems and gave in
each case the complete method of solution which was expected by
the science teacher. The next step taken by the department was to
study his report to determine when and where contacts should be
made in the two fields. Three examples taken from the study will
indicate the type of analysis that is being made. The exampies are
taken from the unit on matter and energy.




1. Problem: If one allows 1/2% for slippage on account of ice
and snow, how many revolutions would the 80 cm. wheels of a car
make in running a kilometer?

Solution:
100,000 100,000 _ _

It is evident that the solution of the problem involves many abili-
ties, any one of which may decide success or failure. The pupil must
be able to read the problem understandingly. He must grasp the sit-
uation described. He must know how to express measures. He must
know how to express the number of revolutions in terms of circum-
ference and distance traveled, i.e., the distance has to be divided by
the circumference (80)(3.14). He must be able to multiply and di-
vide decimal fractions. One-half per cent of the number of revolu-
tions is to be found, and finally the two resulting decimal fractions
have to be added. Thus, the problem involves arithmetical computa-
tion with whole numbers and decimal fractions; a knowledge of
metric units, of the circumference formula, and of the relation be-
tween distance traveled and circumference. Moreover, ability in
arithmetical reasoning is required to determine which arithmetic pro-
cesses are to be performed and in which order. In this case it will be
advantageous to add before dividing. Finally, the pupil must know
how many figures to use in the value of &, how far to carry the mul-
tiplication by 80 and the division by 80m. Finally, his answer must
be a reasonable one. Thus, an answer of 399.88 revolutions would
pretend greater accuracy than is in keeping with the nature of the
problem. The best he can say is that the wheels make about 400
revolutions.

Few teachers of science will take the trouble to identify the
mathematical difficulties in this problem which at first thought may
seem to be merely a simple arithmetical exercise. The chances are
that if the pupils fail the teacher will dispose of the whole matter
with the sweeping statement that the “pupils do not know how to
use their mathematics.” Problems of this type make integration
highly desirable. Somebody has to see to it that the required abilities
are developed. The problems supply the mathematics teacher with
interesting applications and if properly taught they offer excellent
training in mathematical computation and thinking.

2. Problem: Find the resultant of two forces of 200 grams
each acting at an angle of 60 degrees with each other.
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Solution: Draw to scale or construct a parallelogram with
two adjacent sides equal to 200 units each forming an angle of 60
degrees. Draw the diagonal and measure it in the unit used for the
sides.

The solution of this problem requires a knowledge of some of
the properties of the parallelogram; of drawing an angle of 60 de-
grees either by use of protractor or by geometric construction; and of
the use of ruler and squared paper in making scale drawings. The
problem could be assigned to a class in plane geometry.

3. Problem: A captive balloon whose lifting force is a ton was
blown during a storm until its anchor rope made an angle of 60 de-
grees with the surface of the earth. Find the force of the wind.

Solution: The problem may be solved in three ways: by a
scale drawing, by a proportion, or by trigonometry. The trigono-
metric method which is the most convenient is as follows:

A right triangle is drawn with the acute angle equal to 60°. The
side opposite is 2000 and the side adjacent is the unknown, f.

tan 60° = ZT
2000
Sf=E == 1154.7
f 3

The force is 1155 pounds.

The solution involves the ability to make simple geometric dia-

grams; a knowledge of the tangent function; to find 3; to solve a
simple equation; and to divide by a decimal fraction. The pupil must
know how to express different measures of weight in the same unit.
He must know to how many figures he should carry the arithmetical
computations.

It will be noted that all of the skills and abilities which the three
problems presuppose are contained in the general list derived from
the studies mentioned earlier in this paper. The advantage of an
analysis of the courses offered in a particular school is that it makes
it possible to determine where the various processes and facts are
needed in the science courses and where they may be taught in the
mathematics courses. When that has been done the first step toward
integration has been taken.



Attempts to solve the problem of mathematical diffi-
culties in study of the sciences. It has been shown that math-
ematical problems which occur in science courses and which seem
simple at first thought involve serious mathematical difficulties. A
detailed analysis of the abilities required to solve the problems
would enable the teachers of both subjects to help the pupils over-
come them. A detailed list of such problems would provide the
teachers of mathematics with vital applications for the abstract facts
and processes of mathematics. They offer excellent opportunities for
bringing about a closer relationship between the two departments.

Ignorance in these matters has been the cause of criticisms of the
teaching of mathematics and sometimes of friction between two de-
partments that should be in the closest possible agreement. Indeed,
one drastic recommendation for the solution of the problem of math-
ematical difficulties in high school science has been to demathema-
tize the science courses by making them essentially informational.
Most science teachers, however, feel that the study of science is as
much one of mathematical relationships as of accumulating a body
of facts and information, and that high school science courses freed
from mathematics are not the best science preparation for pupils who
expect to continue the study of science.

A second method of solving the problem of mathematical diffi-
culties in science is to leave the science and mathematics courses
undisturbed and to form two groups of students corresponding to
their mathematical ability. Those who are able to make easy and
rapid progress in mathematics are permitted to advance rapidly and
with a considerable saving of time. The group of students less ca-
pable in mathematics is given some mathematical instruction. They
finish the science courses at a slower rate of progress.

A third plan that has been tried in some schools is to administer
to all students who enroll for courses in physics and chemistry an
examination covering the mathematics needed in science courses.
Usually the examination is given during the first week of the science
course. The students who fail to pass the examination either do out-
side assigned work in mathematics along with the science course or
they may postpone the science course until they are able to give evi-
dence of possessing the required mathematical knowledge.

The three plans do not attempt a reorganization of courses and
involve only a small amount of cooperation between the two de-
partments.

A fourth plan aims to reach an agreement between the depart-
ments as to which one is to assume responsibility for removing
mathematical deficiencies. Either the students are referred to the
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mathematics department for correction of deficiencies when they ap-
pear, or the science teacher assumes the responsibility of teaching
mathematics whenever such needs become apparent.

A fifth plan tries to establish complete departmental cooperation.
The science situations requiring mathematical knowledge are deter-
mined. Each is analyzed as to the particular mathematical skills and
processes involved. The mathematics department is informed as to
the time when these skills and processes will be needed and under-
takes to provide them.

The last plan has been modified in some schools by actually
transferring certain science experiments of a mathematical nature to
the mathematics department. This requires also the transfer of a cer-
tain amount of laboratory equipment. A few typical experiments
which may be performed in the mathematical laboratory are: the re-
lation between the metric system and other systems of measurement
of length, area, volume and weight; specific gravity; laws of lever-
age; law of vibration of the pendulum; center of gravity; images in
the plane mirror; refraction of light; parallelogram of forces, com-
position and resolution of forces; the inclined plane, pulleys; devel-
opment of certain formulas such as the relation of Centigrade and
Fahrenheit, of distance and time in the law of falling bodies, and
their graphical representation; curvature of a lens.

Experiments like the foregoing are based on mathematical prin-
ciples and may be performed in the mathematical laboratory when-
ever these principles appear in the science courses. The plan sug-
gests a type of integration which may be introduced in schools with
little disturbance and difficulty.

Finally, a sixth plan has been advocated which recommends the
merging of two departments into one. The same teacher gives in-
struction in science and in mathematics. The plan has been success-
fully used in European schools. Its introduction in American schools
requires rather radical departmental changes which seem to make the
plan prohibitive.

A modification of the plan was tried in the University High
School during the past year. Since the mathematics and general
science courses alternate each semester in the seventh grade, one
general science class was taught the first semester by one of the
science instructors and continued with mathematics the second
semester with the same instructor. Another group took mathematics
the first semester and continued with general science the second,
being taught the entire year by one of the mathematics instructors.
Since not a great deal of mathematics is used in the general science
course, there were few opportunities for integration. The major ad-
vantage was that the two instructors became thoroughly familiar
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with both fields and that each developed an acquaintance with certain
problems peculiar to the other’s field. One of the first steps toward
closer cooperation between the two departments has thus been
taken.

Summary: It has been shown that the problem of integration of
mathematics and science is not new. Professor Moore’s recommen-
dation made in 1903 “that algebra, geometry and physics of the sec-
ondary school should be organized into a thoroughly coherent
course” sounds perfectly modern today, although it was made more
than thirty years ago. For a number of years much interest was
shown in the problem. A number of plans were advocated.
However, these plans, after being tried in various schools, were
abandoned and the problem received practically no more attention
until recently.

The modern trend toward integration of high school subjects has
revived interest in the problem, and again certain progressive
schools are experimenting. It is as yet too early to expect any mea-
sured results, and so far no results have been published that may be
of assistance to other schools. However, the chances for success are
more favorable, especially since most students now preparing to
teach mathematics are qualified to teach courses in a second field.
For mathematics this second field is usually in the sciences.
Furthermore, the administrators of the secondary schools have be-
come interested in the problem and are ready to encourage experi-
mentation.

For schools planning to experiment with an integrated program
in science and mathematics the following steps are recommended:

1. Analyze the science syllabus, texts, manuals, notebooks of
pupils, guide sheets, and the specific units for situations which are
mathematical in nature and require a knowledge of mathematical
concepts, principles and processes.

Make a complete list of the types of mathematics which
pupils need to solve the science problems and to read understand-
ingly the assigned literature.

3. Analyze the problems and reading matter to discover the
specific abilities necessary for understanding.

4. Collect specific criticisms of the science department as to the
mathematical deficiencies of the pupils.

5. Determine the place and time in which certain knowledge and
skills are expected to have been acquired.

6. Check the findings against the mathematics courses to see if
the requirements have been adequately provided for.




7. Hold joint conferences of the two departments to determine
the mathematical responsibilities to be assumed by the science de-
partment and the science responsibilities to be assumed by the math-
ematics teachers. No progress can be expected unless both depart-
ments have a real interest in the plan.

8. Make arrangements for transfer of subject matter and exper-
iments of scierce to mathematics, and of mathematics to be taught
by the science teachers.

9. Encourage teachers of either department to offer courses in
the other.

Advantages to be derived from the plan: It is to be ex-
pected that the work of both departments will improve if science and
mathematics are integrated because of the sympathetic attitude of all
teachers toward the problems in both fields. The methods of the two
departments will be in agreement and the pupil will not be confused
by conflicting procedures employed by different departments. The
plan should result in a saving of the pupils’ time and effort. The
chances are that the great scientific ideas and principles common to
the two fields will really be learned by the pupil when he is given a
broad outlook of both. The methods of science will find a way into
mathematics teaching. Mathematics will tend to become more exper-
imental and therefore less formal and mechanical--a study of rela-
tionships, a mode of thinking.
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How Much Mathematics Should
Be Required and Used m High
School Physics?!

Robert E. Carpenter
Kellogg Community College, Battle Creek, MI
(Vol. LXII No.5 May, 1962)

The answer to the. question, “‘How much mathematics should be
required and used in high school physics?” is one that has been of
great importance in the ‘past few years because it is the use of math-
ematics in physics which takes the blame for the drop in enrollment
and the failures in high school physics classes. Some authors and
educators have suggested that mathematics snould be removed from
these courses and that physics should be taught only as “cultural”
courses.

“. .. we may teach it [physics] as a cultural subject--as an ap-
preciation and understanding of the concrete objects of our scien-
tific environment; or we may teach it as preparation for becom-
ing a physicist or an engineer. For the majority of high school
students only the cultural course is meaningful. . . . if we teach
physics as a cultural understanding of the concrete objects of our
physical environment, mathematical problems are not neces-
sary.” (3)

This writer wishes to present the opposite point of view. I be-
lieve that the high school physics course should require all the math-
ematics that the student can get before enrolling in the subject. I
agree fully with the belief that *. . . for permanent value, the teach-
ing of physics must still center in a real understanding of its princi-
ples and relations and of the units of measurement employed.

1\ paper presented at the convention of the Central Association of Science and
Mathematics Teachers, Chicago, Illinois, November 24, 1961.




Otherwise, the student will merely learn about physics instead of
learning the subject itself.” (1)

Before we can arrive at any solution to the problem of how
much mathematics should be used, we must define the types of
physics courses taught. Generally, these courses are divided into
three major categories based on the type of student enrolled. These
are:

(1) The College Preparatory or “Academic” course. This includes
the advanced placement or honors students.

(2) The General Course. This is probably the course found in
most schools and includes all types of students.

(3) Practical Physics. An examination of the outlines for this
course indicates that it probably should not be called physics at all.

Whichever type of course is taught, the most important aim
should be to introduce the student to the processes of exact, quanti-
tative thinking, along with careful observation and honest reporting
and analysis of what he observes. Such an aim means that the stu-
dent must know how to apply his arithmetic, algebra, geometry, and
trigonometry. He must be taught that these are useful tools. He must
be taught the proper use of these tools in his physics courses. The
physics teacher cannot expect the mathematics teacher to do this for
him. The mathematics instructor can give the pupil the concepts and
principles of mathematics, but it is the responsibility of the physics
instructor to show him how to apply these concepts in a physics
class.

Certain minimum mathematical requirements should be set as
prerequisites for any high school physics course if quantitative rea-
soning is to be a part of the course. These are two years of algebra
and one year of geometry with a grade of “C” or better. For the col-
lege preparatory course, one semester of trigonometry should also
be required. In some cases, the trigonometry and physics may be
taken concurrently.

I realize these requirements may create some scheduling prob-
lems in schools in which a minimum curriculum is offered. Any
school, however, should be able to offer two years of algebra and
one of geometry by the student’s senior year. The trigonometry
needed for the physics course may have to be included as a part of
the course. Another major problem created by these requirements in-
volves the administrators and counsellors, who might have to tell a
student which subjects he can take instead of allowing him the usual




freedom of choice. Perhaps the physics teachers can help to show
parents and students that school is a place to learn and that pupils
should be placed where they belong and not where they wish to be.

How these mathematical prerequisites will be used in a course
will be determined by the type of course taught and the ability of the
students enrolled. In the general and practical courses, it is not nec-
essary for all students to derive the formulae for the laws of motion
in order for them to understand the meaning of such laws. All stu-
dents, however, do need to work with these laws in a quantitative
way. How can one fully understand that it will require at least four
times the distance to stop a car at sixty miles per hour as it does at
thirty miles per hour if he has no opportunity to prove this mathe-
matically?

If the practical course is to be taught, and if the majority of stu-
dents in the course are non-college preparatory, one might ask,
“Why should these students be required to have mathematics prere-
quisites of algebra and geometry?” The answer to this question can
be found in the outline for the course. Such a course should deal
with the applications of the physical laws and concepts, applications
which have been developed or discovered because of the mathemati-
cal and quantitative nature of the laws. The best way to give a stu-
dent a real understanding of the practical uses of a physical concept
is to provide him with opportunities to set up and solve applied
problems. '

Granted, a student can be taught the proper way to put a plug on
the end of an extension cord. He can also find out whether the appli-
ance on the other end of the cord will blow a fuse by the simple ex-
periment of plugging it in. Is this physics? Would he not have a
better understanding of why a fuse might blow if he has had the ex-
perience of actually calculating the power consumed in an a.c. circuit

- by several appliances? Such experiences might prove to be less ex-
pensive and, in a few cases, less disastrous.

So far I have tried to present a few arguments for the need for
mathematics pre-requisites as a requirement for students enrolled in
high school physics classes. How much and what kind of mathe-
matics should be used in the classes should also be considered.

A student should be able to read a problem, analyze it, and apply
the proper arithmetic, algebra, geometry, or trigonometry in solving
it. He should be able to state the problem in a mathematical way,
using properly defined symbols and equations. The equations must
show all relationships that are stated or implied i the problem. It be-
comes necessary for the physics teacher to make the student under-
stand that he must clearly define the terms and symbols which he
plans to use in solving a problem. An example illustrating the use of
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analysis and equations can be found in the problem of finding the
resultant of two forces acting at right angles to each other from the
same point. The student should be able to translate such a problem
in terms of the Pythagorean theorem and set up a mathematical ex-
pression to show this. Have you ever asked your students to state
and explain this theorem? Most of them will probably say
“c2=g2+b2.” If you now ask them what ¢2, a? and b are, few can
tell you even with the usual ABC right triangle drawn on the chalk
board. Incidentally, it should not be too great a task to relate the use
of basic trigonometric functions to such problems.

Since the quantitative work in physics involves measurement,
the use of units becomes an important concept. Teachers should in-
sist that students include the proper units throughout the solution of
every problem, experimental or otherwise. Students should be al-
lowed to develop their own units so long as they have a logical rea-
son for doing so. Timing an event in terms of heart beats should be
as thrilling and useful today as it was in Galileo’s time.

Measurement immediately calls to mind the importance of error.
Students need to know how to account for errors, and how to ana-
lyze measurements in terms of uncertainty. They also need to know
the meaning of per cent of error. An understanding of measurement
and errors due to measuring can be related to significant numbers.

The use of exponential notation for very large or very small
numbers should be considered also. Such numbers as Avogadro’s
number (6.02 X 1023) or Angstrom units (1X10-10 meters) are
much easier to comprehend than if they are written out the “long”
way.

The construction and interpretation of graphs is another phase
which should be included in every physics course. Direct and in-
verse proportion can be shown quite readily by graphs. A plot of
velocity-time relationship for a freely falling body can be used to
show the distance. The distance is equal to the area under the curve
or the area of the triangle with base ¢ and altitude gt. This area is
equal to 1/2(g2). Is this use of graphs an introduction to calculus?

)

78




30 \

g \
QD
(73]
~ 20
E
2:. o]
£ 10
o H
S —~

0

0 1 2 3

Many examples, other than the ones discussed, could be listed,
each one illustrating the need for the use of mathematics in physics.
Any physics course, be it academic or practical, must be based on
nature’s physical laws and phenomena--and these laws and phe-
nomena are mathematical.

We physics teachers have the responsibility of showing our stu-
dents the importance of quantitative reasoning, experimentation, and
observation in trying to understand nature’s physical phenomena. If
we only give students an appreciation for the physical world as it
“mathematically and quantitatively” exists, we will at least have
helped to prepare them for their science-centered world.
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Scientific Concepts in the Junior
High Schooi Mathematics
Curriculum!

William L. Schaaf
(Vol. LXV No.7 October, 1965)

Theoretically, a curriculum in secondary mathematics can be con-
structed with little or no reference to the physical sciences. Indeed,
most mathematics courses are of this nature. It is hardly conceiv-
able, on the other hand, that a substantial curriculum in the physical
sciences can be designed without a modicum of references to math-
ematics, and yet this is commonly done. To be sure, mathematics at
the secondary level and even below can be taught as a self-consistent
deductive system without any allusions whatever to natural phenom-
ena. But it is difficult to see how science--particularly physics,
chemistry, and portions of general science--can be taught meaning-
fully without introducing certain mathematical concepts.

From time to time, during the past fifty or sixty years, educators
have advocated some form of “integration” of science and mathemat-
ics to the end that each discipline should benefit from the other.
Thus from John Perry, E. H. Moore and Felix Klein at the turn of
the century, down to the contemporary champion of such a program
in the person of Morris Kline, many a voice has been raised for
greater fusion of these two disciplines. Such proposals, however,
have never really taken hold in the United States, although they are
common enough in Europe. In the past, the alleged explanation for
the failure to teach mathematics and science together was the fact that
many mathematics teachers didn’t know enough science, and, per-

Iz paper presented at the 64th annual convention of the Central Association of
Science and Mathematics Teachers, November 28, 1964.




haps less frequently, many science teachers didn’t know enough
mathematics. Due to the contemporary emphasis in secondary math-
ematics on logical foundations and structure, there appears to be less
likelihood than ever of introducing a significant amount of science
material into mathematics courses. If so, this would be most unfor-
tunate for both subjects, inasmuch as on the highest levels, modern
science leans heavily on “pure” mathematics of the most abstract
nature. I am convinced that junior high school pupils can learn a
number of scientific concepts in conjunction with their mathematics.

PSYCHOLOGY OF CONCEPT LEARNING

Let us begin with a brief consideration of the psychological
aspects of learning concepts, particularly concepts such as those en-
countered in science and mathematics, which are characterized by
generality, preciseness, and abstractness. Conventional psychology
texts, frankly, do not offer much help. The researches of Piaget,
Bruner and others, however, throw considerable light on the matter,
and much of what follows is based directly on the findings of
Professor Bruner and his associates at Harvard University.2 Their
findings furnish a useful background for our discussion. In general,
the learning of concepts involves two major factors: (1) discovery
and intuition, and (2) communication. To be sure, Bruner breaks
this down into four factors, but from my point of view it is more
convenient to think of discovery and intuition together, while
“translation” and “readiness” are so inextricably associated with lan-
guage and semantics that probably the translating of intuitive ideas
into generalizations and abstractions is part and parcel of communi-
cation between teacher and learner.

According to Bruner, the procedure or mode of thinking by
which a discovery is arrived at is more important than the discovery
itself. He points out, further, that at one end of the spectrum the
learner can accommodate by accepting what he encounters or is pre-
sented with and changing his behavior accordingly; at the other end,
he can assimilate by converting current experience into what are for
him already existing concepts and meanings. Probably neither of
these extremes is ideal, and a middle course is more realistic. In any
event, the discovery itself--the end product--is a built-in reward. At
this point, I should like to make a few observations from the stand-
point of the classroom teacher. For some pupils this is a wonderful

2Cf. Jerome Bruner, On Leamning Mathematics, The Mathematics Teac: zr,
53:610-619 (December, 1960).



experiment. But at best it is rather time-consuming, and at worst,
very uneconomical. Let’s be honest: how many of our pupils are
potential Newtons or Gausses or Einsteins? Even with skillful guid-
ance and expert heuristic teaching, it is unrealistic to expect the ma-
jority of pupils to discover (or rediscover) many of the major signif-
icant concepts in any area of science or mathematics.

We should note that an intuitive discovery is in essence a conjec-
ture, an inner realization of the meaning or nature of a concept or
relation without recourse to logical analysis or formal proof. Suffice
it to say that there are good reasons for encouraging pupils--espe-
cially in the lower grades and in the junior high school--to use intu-
ition freely. Under no conditions should the disposition to *“guess”
and discover be inhibited or penalized, despite the possible draw-
back mentioned above.

Having made a discovery, or on the threshold of grasping an
idea intuitively, how shall it be transformed into a general principle,
or an abstract concept, or an analytical tool? This is largely a matter
of language and communication. As a general rule, technical and
semitechnical terms should not be introduced until the learner has al-
ready grasped the meaning intuitively. It may also be helpful to dis-
tinguish (loosely perhaps) between concepts somewhat as follows:

Reality Evidence Examples

(1) Obvious “real”  Direct observation; sensory Volume; weight; motion;
existence impression illumination

(2) Quasi-realexis- Indirect observation; surro-  Capacity; force; pressure;
tence gate sensory impressions;  temperature
measurements

(3) Intellectual exis- Abstract concept; symbol-  Center of gravity; moment
tence ism of inertia; chemical bond;
true value of a measure-
ment

In addition to considering the nature of the concept as just sug-
gested, there is also the matter of sequence. Some concepts are
clearly prerequisite for understanding other concepts. For example,
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before a pupll can understand “angle of elevation” and “angle of de-
pression,” he must understand the meaning of horizontal, vertical,
perpendicular, altitude, parallel, alternate interior angles between
parallels. Or, again, before he can grasp the meaning of the preci-
sion of an instrument or a measurement, he must know the meaning
of scale, unit, subdivision, midpoint, estimate, absolute error.
Finally, will the learner grasp the meaning which we want him
to? This is far from a simple matter. It goes beyond mere
“readiness.” It is a function of maturation, to be sure, but there are
probably other more significant considerations, such as both the
learner’s and the teacher’s purpose and objectives; the learner’s in-
dividual personal satisfactions; recognizable utility of the thing being
learned, immediate or ultimate; intrinsic interest or appeal in the con-
text of the learner’s milieu. Not the least important factor is the
question of whether the desired goal is to achieve wide coverage
rather than depth and continuity of content, that is, appreciation
rather than clear understanding and insight. But this is a matter of
educational philosophy which I do not propose to enter upon here.

SCIENCE CONCEPTS IN MATHEMATICS

Let me say at once that the following selection of topics for pos-
sible inclusion in the mathematics curriculum for Grades 7-9 is en-
tirely arbitrary, and merely suggestive; it represents a personal con-
viction, or, if you will, a hunch as to what might be feasible and
desirable. You may feel that some of the topics suggested are too
difficult for 12-14 year olds, or you may believe that the topics are
too unrelated to each other. No doubt other objections may suggest
themselves. Nevertheless I am reasonably certain that these concepts
are (1) easily motivated; (2) 1ntrm51cally significant; and (3) readily
related to and illustrative of important mathematical concepts cur-
rently being taught at these grade levels.

GRADE 7

The Lever. The lever as a simple machine is easily motivated.
Many of the tools, gadgets and other artifacts with which modern
man is surrounded and which illustrate the lever are perfectly famil-
iar to boys and girls. Sports and Scout activities furnish other ex-
amples of levers. The principle of moments is a significant physical
concept. The intuitive grasp of the role played by a force and its arm
flows readily out of children’s experiences on the playground. The
final anaiytical formulation
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W1d1 = Wzdz

is easily enough reached. True, the concept of a turning moment is
an “intellectual concept,” or an abstract concept; but the vivid experi-
ences on a physical teeter-board, both as to the effect of changing a
W or a d, should lend plausibility to the product Wd. The symbolic
expression of the law of the lever exemplifies the concept of equality
and furnishes an opportunity for solving simple equations.

Temperature. The average adult layman is often confused
about heat and temperature and their measurement. And yet many
everyday experiences involve these notions. Frozen foods openly
displayed in the supermarket; the deep freezer in the home; questions
of temperature in outer space, in the earth’s interior, or on the sun:
could a topic be more easily motivated? We note that the concepts
involved in measuring temperature are not readily arrived at intu-
itively, since direct sencory observations (excluding reading a ther-
mometer) are notoriousiy misleading. Among the prerequisite con-
cepts involved are the phenomenon of expansion, the stability of
melting points and boiling points, and the arbitrary selection of the
scale to be used. The ultimate analytical expressions

F= §C+32 and C = %(F—.S‘Z)

are not particularly difficult to arrive at, although there is the danger
that the net achievement may simmer down to skill in numerical
substitution and conversion from one scale to another. However, it
seems likely that this can be avoided if attention is given to the no-
tion of comparison by means of a ratio rather than by difference,
stressing the relation of the ratio of 180:100 or 9:5.

Density. The volume of a physical object, the room that it takes
up or the space that it occupies, is presumably a simple concept to
grasp. Its mass, often confused with its weight, is not quite so sim-
ple, although intuitively quickly understood. Density, however, is a
concept that probably belongs to the abstract construct category.
Although the symbolism D=M/V is simple enough, the fractional
form could be deceptive, suggesting a ratio rather than a rate. Yet
this is a rate form that occurs fairly frequently in the sciences: “so
much of some property per unit of some other property.”

Liquid Pressure. Here a number of prerequisite concepts are
indicated, namely, the concepts of force, pressure, the virtual in-
compressibility of liquids, the relation of pressure to depth, and
Pascal’s principle of transmission of liquid pressure. All these con-
cepts are “slippery”; certainly they are of the quasi-real existence
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type. The intuitive discovery of these concepts may not be particu-
larly difficult to come by, especially with “structured” experimenta-
tion and skillful heuristic guidance. But to make the transition to the
generalizations, grasping their full significance, is another story. It
is not easy to “visualize” a force acting although apparently “nothing
is happening”. Force per unit of area (i.e., pressure) is less difficult
to conceive, although the learner may have to supply his own hypo-
thetical unit surface as a category of the mind. That internal pressure
exists upon every particle of a liquid, due to molecular motion and
the mass of the particles, is by no means a simple idea, but probably
within the comprehension of pupils; the notion that pressure at any
point within the liquid is exerted equally in all directions is one that
may have to be accepted on faith, for a while at least, despite the fact
that the indirect sensory evidence is easy enough to come by. Once
the last two concepts have become meaningful, the idea that pressure
varies directly as the depth and as the density is relatively easy. The
symbolic forms for these generalizations are simple algebraic ex-
pressions:

Pressure (in general):
P=F/A,orF=PA

Liquids:
P=HD

(where H = height and D = density).
for horizontal surface:
F =AHD
for vertical surface:
F=AHD/2

As for buoyancy, this is a concept which has easy motivation
that is rooted in many common experiences: it is easier to lift a stone
under water than when it is out of the water; it is easier to swim and
float in salt water than in fresh water; push a floating object under
the surface and when released it bobs up immediately; and so on.
Yet the principle of Archimedes, that an object immersed in a liquid
apparently loses weight to the extent of the weight of the liquid it has
displaced, is for most learners a particularly difficult concept to un-
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derstand. That there should be some apparent loss of weight most
learners will agree to intuitively without much difficulty; but to un-
derstand exactly how much weight is lost, and why, is something
else again. Yet, with a simple mathematical analysis of a hypotheti-
cal cube immersed successively at different depths, it is possible to
develop the concept that the buoyant force equals A(hy-h;)d = Vd,
or the weight of the liquid displaced by the cube.

Boyle’s Law. The tyro finds it somewhat more difficult to
understand the properties and behavior of gases than those of solids
and liquids. Here is a case of “quasi-real existence.” Most gases
can’t even be seen or felt; that the familiar air which constantly sur-
rounds us should have weight and be able to exert “real”” pressure is
not easy to believe. Yet the phenomenon of atmospheric pressure,
the barometer, and Boyle’s law are significant concepts of science.
These topics are easily motivated: the boy’s bicycle tire, effortlessly
inflated at the neighborhood filling station; the role of the barometer
in weather forecasting; variations in atmospheric pressure at differ-
ent altitudes; pressurized cabins in aircraft; the complete lack of air
pressure in outer space; all these are of interest to junior high school
pupils. As for the mathematical concept involved, Boyle’s law pro-
vides a simple dramatic instance of inverse variation, and the alter-
native symbolic expressions, V,/V,=P,/P; and P,V ;=P,V,, can be
extremely illuminating.

GRADE 8

Suggested concepts for this grade level might well include a dis-
cussion of the speed of sound; linear and cubical expansion caused
by heat; the inverse-square law of illumination; further discussion of
the gas laws; uniformly accelerated motion and freely falling bodies.
To be sure, the several topics mentioned are unrelated, but each one
i5 more or less self-contained. Moreover, each of these topics is
readily motivated, and the mathematical concepis involved are sim-
ple. The scientific concepts vary in difficulty and subtlety and there
are admitted pitfalls.

Sound and Heat. Perhaps the simplest concept among this
group is that the velocity of sound varies with the temperature and
with the nature of the transmitting medium. When trying to under-
stand and use a linear coefficient of expansion, the pupil may run
into difficulty of a skill nature, namely, in handling 5- and 6-place
decimals. He may also find the symbolism a bit formidable: L,-
L;=L;k(ty-t;), although it would seem that neither the concept of the
difference between two lengths or between two temperatures, nor
the use of subscripts to designate similar quantities, is intrinsically
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as difficult as some of the rather subtle mathematical concepts that
contemporary zighth-graders are expected to learn, such as the dis-
tinction between a subset and a proper subset, or the concept that
between any two given rational numbers there exists an infinitude of
other rational numbers.

Light. The inverse-square law may present one or two unique
difficulties. It may be the pupil’s first encounter with inverse varia-
tion; the additional consideration that the variation is of the form

y=k/x2 rather than y=k/x may also be confusing. Then there is the
concept of intensity of illumination, involving the use of a com-
pound unit, the foot-candle. If it be pointed out that the idea of a
compound unit such as this is too sophisticated, it could be said that
a few years ago, when “social and economic arithmetic” was in fa-
vor, eighth-grade textbooks did not hesitate to introduce such terms
as man-hours, ton-miles and passenger-miles.

Gas Laws. Extension of the gas laws to include the relation
between volume and temperature when the pressure remains con-
stant, and the relation between pressure and temperature when the
volume remains constant, are conceded to be a bit sophisticated. For
one thing, the concept of absolute temperature must be developed
first. Then there is the danger of becoming involved in a discussion
of isothermal expansion and adiabatic expansion, and I am not ad-
vocating teaching those ideas at this grade level. However, it is quite
feasible to emphasize the contrast between Boyle’s law and Charles’
law--one being an instance of inverse variation, the other, direct
variation. These are the mathematical concepts that we should seek
to clarify.

Motion. When we come to problems of uniformly accelerated
motion and freely falling bodies, we are dealing with a subtle con-
cept--the rate of change of a rate of change. For most pupils, the no-
tion of a simple time rate of change--a car driven at 55 miles per
hour, or a jet plane flying at 650 miles per hour--is readily compre-
hended; so is the relation D=RxT, or R=D/T. From this it is an easy
step to the analytic formulation of

s =V, v

it
-~ |y

t_i.
Y

If the motion is uniformly accelerated, we will have to introduce the
concept of change of velocity per unit of time, or

Vo - V)
T
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this is where the rate of change of a rate of change enters the picture.
The learner must grasp the idea that if the velocity of an object
changes from 10 ft./sec. to 50 ft./sec. during an interval of 5 sec.,
its acceleration is at the rate of (50-10)/5=8 ft./sec./sec. This unit of
“ft./sec./sec.” is a novel situation and may cause difficulty. In order
to arrive at the distance relation for uniformly accelerated motion, we
must first develop the idea that v=at; then we must get across the
idea of average velocity, and why average velocity=(0+at)/2 =1/2at.
Once this is understood, the relation s=1/2ar falls into place easily
enough. Lest it be thought that the idea of an average velocity is too
recondite, we might remember that youngsters are realistic: They
know that if you ride a bicycle or drive a car any distance, the veloc-
ity is likely to fluctuate during the journey, and so if it took 3 hours
to go 120 miles, the average velocity during that 3-hour period was

40 mi./hr. Discovering from the earlier relations th.. 2=2gs, or

v = Y 2as, is a good example of the power of analytic expressions.

If average eighth-grade pupils can master these concepts (and it
is quite possible that only the brightest among them can do so), then
the idea of freely falling bodies should not be difficult. The chief
hurdle here is to make the constant acceleration of gravity a mean-
ingful concept--and I don’t mean just memorizing the fact that
£=32.2 ft./sec./sec. The analogous relations

v=gt, s=1/12g2, v =+2gs
should then become meaningful.
GRADE 9

As likely topics for inclusion at this level one might suggest:
Hooke’s law of elasticity; concurrent forces; horizontal and vertical
components; parallelogram of forces; quantity of heat and specific
heat; Ohm’s law; parallel and series circuits; electrical resistance;
electric energy and power; heat effect of an electric current.
Although some of these topics may not be quite obviously moti-
vated, they do touch upon fairly familiar everyday experiences: the
strength of materials used in constructing bridges and sky-scrapers;
the effect of winds on aircraft travel, the angle of drift, etc.; the ef-
fect of large masses of water upon surrounding climate; method of
wiring strings of Christmas tree lights, or city street lights, so that if
one lamp goes out, it does not affect the others; do we purchase
electric energy or electric power from the utility company? Why are
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electric toasters, electric irons and electric heaters more expensive to
operate than electric fans and electric motors?

Elasticity. The concept of elasticity is not always clearly un-
derstood by the layman. Prerequisite concepts are stress (F/A);
strain (Ax/x); deformation (Ax); and elastic limit. Within the elastic
limit, the ratio of stress to strain is constant, exemplifying direct
variation:

i:::ff =K; ori—/x/-a- =k = Young’s Modulus

X

Forces. The concepts of horizontal and vertical components of
forces and of the parallelogram of forces afford an interesting appli-
cation of numerical trigonometry, and should not cause great diffi-
culty. The skillful teacher will present the sine, cosine and tangent
functions in the role of multipliers as well as ratios.

Heat. Heat exchange may present a slight problem. Again we
are in the area of concepts having quasi-real existence. Associated
and prerequisite concepts include temperature gradient, specific heat,
familiarity with calories, and the principle of the conservation of en-
ergy. Once the concept of equivalence of total heat lost and total heat
gained has been grasped, and the significance of specific heat is ap-
preciated, the analytic statement

Wi=( -tg)(s;)=Wy(ts- 1))s;
may not be as frightful as it might seem.

Electricity. When we come to topics in electricity, we have the
relation / = E/R, showing that current varies directly as the electro-
motive force (e.m.f) and inversely as the resistance. What the
learner should come to understand is that

()I=Elk and (2)!=K/R

where k and K are constants. It must be realized, of course, that
here we are almost in the realm of “intellectual existence” insofar as
the concepts of current intensity, €.m.f., and resistance are con-
cerned. There is a danger that, with insufficient experimentai and
other science background, these terms may become mere verbal
symbols unassociated with any clear conceptual understanding.
(This danger exists, I suppose, for the science pupil as well as for
the pupil in the mathematics class.)




Series-connected circuits present no difficulty. A parallel circuit,
however, presents a slight conceptual difficulty, viz., that the volt-
age across each branch remains the same. There is also a possible
difficulty on the skill side: the handling of fractional equations of the
form ’

1 1 1 1

R_Q+Q+@

This matter of electrical resistance is a bit “sticky.” The electrical
resistance offered by a conductor is a function of (1) the nature of
the conductor; (2) the length of the conductor; (3) the temperature of
the conductor; (4) the cross-sectional area of the conductor. Possibly
the two significant mathematical concepts here are that resistance
varies :

(1) directly as the length, and

(2) inversely as the area, or inversely as the square of the diame-
ter, the latter exemplifying a property of the areas of similar figures.

To understand the relation of electrical power to electrical en-
ergy, a number of preliminary concepts must have been grasped:

(1) Power (watts) = volts x amperes, or W=/E
(2) Since E = IR, wesay W = I(IR) = I’R

(3) Kilowatts = volts x amperes/1000

(4) 1kw.=1 1/3 horsepower

(5) Power is the rate of doing work

(6) Energy =Power x Time

(7) Kilowatt-hours (energy) = IxExt/1000

I am willing to concede that there are considerably more science
concepts in this group of ideas than mathematical ideas; yet some-
how it seems to be something worth considering in a mathematics
class nevertheless. Finally, there are a few additional topics that
might well be worked into any one (or all three) of these years, but
for lack of time they can only be indicated here. In connection with
measurement, these are the concepts: unit of measurement; standard
measure, scale; absolute error; relative error, precision, accuracy; tol-
erance, deviation; scientific notation.




SUMMARY AND CONCLUSION

We have arbitrarily singled out some fifteen or twenty pertinent
topics of physical science, involving possibly half a hundred con-
cepts concerning natural phenomena. We have indicated that these
concepts stand in close relation to a small number of highly signifi-
cant mathematical concepts which apparently are “built into” the
contemporary junior high school mathematics curriculum along with
the present day emphasis on structures and logic: these concepts in-
clude ratio; variable and constant; function and graph,; direct, inverse
and joint variation; linear function; quadratic function; orthogonal
projection; Pythagorean relation; measurement and error; precision
and accuracy, computation with approximate numbers; exponential
notation.

It is the writer’s considered opinion that if these science concepts
were appropriately introduced into the mathematics course in Grades
7-9, they would dramatize and reinforce some of the mathematical
concepts which we hope will be learned in these grades, and that the
use of the mathematical concepts would in turn contribute to greater
insight, now as well as later, into the meaning of the science con-
cepts. In the light of the psychological considerations presented in
the beginning, it is my further conviction that these science concepts
can be learned effectively by the majority of junior high school
papils. Most of them can be drawn from familiar experiences and
sensory observation, and nearly all of them are of real interest to
children of this level. To be sure, it means adding something to a
rather full curriculum as it is, and it means increasing the responsi-
bility of the mathematics teacher. But we have hardly given it a real
trial, and it would appear to be eminently worth trying. We have
been disposed to underestimate our pupils in the past; perhaps if we
gave them the opportunity they might surprise us agreeably.

Very early in this paper I hinted at the relation of science to
mathematics. Although it does not bear directly on the question un-
der discussion, I cannot refrain from a few observations. We all
know that the precise meaning of the terms “pure mathematics” and
“applied mathematics” is somewhat of a controversial matter, if, in-
deed, there is any valid distinction today. We are all too familiar
with the cliche that mathematics is the language of science. As a re-
cent writer3 has said: “Mathematics is the only language we have by
which statements about nature can be combined according to logical
rules; a language which not only permits us to describe the order in

3Cf. Morris Shamos, “The Language of Science,” in the New Jersey
Mathematics Teacher, 22:5-11 (October, 1964).
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nature, but by providing the logical tools for dealing with these de-
scriptions, leads us to a better understanding of that order. It is an
essential part of the structure of science, not simply an accessory.”
This same writer feels that his colleague, Morris Kline, exaggerated
somewhat when he asserted that, “Science has become a collection
of mathematical theories adorned with a few physical facts.” I am
disposed to say that the former statement is too naive and not nearly
strong enough; while the latter, although much nearer to the truth, is
unfortunately a little too cryptic for comfort.

Nearly forty years ago the case was stated very well by
Heisenberg, when he wrote:

“On the one hand, mathematics is a study of certain aspects of
the human thinking process; on the other hand, when we make
ourselves master of a physical situation, we so arrange the data
as to conform to the demands of our thinking process. It would
seem probable, therefore, that merely in arranging the subject
in a form suitable for discussion we have already iniroduced the
mathematics--the mathematics is unavoidably introduced by
our treatment, and it is inevitable that mathematical principles
appear to rule nature.”

Personally, I feel that one of the most perceptive observations
ever made in this connection was that of the late J. W. N. Sullivan.
Discussing mathematics as an art, he wrote:

“The significance of mathematics resides precisely in the fact
that it is an art; by informing us of the nature of our own
minds it informs us of much that depends on our minds. It
does not enable us to explore some remote region of the exter-
nally existent; it helps to show us how far what exists depends
upon the way in which we exist. We are the law-givers of the
universe; it is even possible that we can experience nothing
but what we have created, and that the greatest of our mathe-
matical creations is the material universe itself.”

€O
AW
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We all realize that science can be kept perfectly safe for elementary
school children. We can give them little electric outfits, cute little steam
engines that whistle, and houses with glass fronts so we can peep in on
the private lives of ants. We can go further and have a workshop where
youngsters can repair simple machinery brought from home and learn
how to work safely with electricity, leaves, and lizards. We can do ali of
this, and never let it penetrate the child’s mind that science has any
significance beyond a mechanical one.

W. Brogan, 1939

Cne of the fundamental purposes for teaching science to little children
is the same as the one offered for the teaching of arithmetic: to help
the child understand his environment, the many quantitative and phe-
nomenal aspects of it, and to help him develop in sequence the con-
cepts and skills which will allow him to pursue at a later date these
studies as they appear in specialized areas and fields.

P. A. Nelson, 1962

IV. Science and
Mathematics in
Elementary education

It should be apparent that science and mathematics may be related in several
ways in our elementary schools. There is a continuum from mathematics for
the sake of mathematics to science for the sake of science. Between these two
extremes lie at least three points of importance: (1) mathematics for the sake of
science, (2) mathematics and science in concert, and (3) science for the sake of
mathematics. Any program that does not include all five points on this contin-
uum is not representative of both disciplines and the related aspects of both
fields of study.

W.R. Brown and C. E. Wall, 1976

The teacher needs to provide an interactive environment for children and help
them focus on what they see and do. This environment must be constructed
with care so that authoritarian, erroneous views and theories are not formed
through inadequate feedback. The teacher should help focus, not dictate, the

learner’s attempt to give structure to what is observed.
N. B. Benham, et. al., 1982
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11

Science and Arithmetic in the
Elementary School Curriculum

Whit Brogan
Northwestern University
(Vol. XXXIX No.2 February, 1939)

Iam assuming the privilege of all speakers who are assigned a
topic; namely, that of interpreting the title in such a way as to permit
me to have my say unmolested by the programming committee.
Hence you will hear very little about arithmetic as such because that
subject has always seemed the basic science to me. It has lost its vi-
tality because we have destroyed that porition and made it a series of

numerical abstractions. .
My discussion today will be on science, but do not forget that

arithmetic is included in that term. The last reference to arithmetic
will be to call your attention to the excellent statement of R. L.
Morton and his committee in the November issue of the Curriculum
Journal.

A healthy, curious small boy, until he has been squelched by
school procedure, can tell us more about the place of science in an
elementary school than can pedagogues. Instead of listening to me
this afternoon you could get a better answer to the question implied
in the title of this talk by listening to that boy pour forth a constant
stream of “How?”, “Why?”, “When?”, or “What makes it go?”;
“How do you work that?” et cetera. Science, insofar as possible,
should help him answer his questions, and that is its place in the
elementary school curriculum.

Of course, that is a lovely generalization which will probably
give rise to some hows, whens, and why of its own. Nevertheless,
I’l1 stick to that generalization as an adequate description of the place
of science in an elementary school. ‘

Science is a newcomer in the elementary curriculum family.
Moreover this babe was born during a combination of a family quar-
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rel and spring house cleaning in our pedagogical household. Father,
mother, aunts, uncles and distant relatives all have plans for the cor-
rect up-bringing of this newcomer, and the plans do not harmonize.
In addition, this babe seems to be the only male child in a somewhat
effeminate group.

Actually, and seriously, the problem in science is exactly the
same as it is for all other school subjects. Is science in the elemen-
tary school a body of material and a method with which children an-
swer their questions, or something that teachers teach, regardless of
immediate questions but directed toward future needs? To put it as
specifically as possible, should a teacher show a pupil how to repair
household electric equipment, or have him go through standard ex-
periments on fixed apparatus to teach laws in physics? Does Johnny
bring his broken bicycle to the laboratory or does the teacher buy
expensive machinery to demonstrate wheels, pulleys, leverage, et
cetera? Or, to reduce it to the standard phraseology, is science a
body of subject matter to be acquired in a sysiematic fashion, or is it
a procedure whereby children secure an increasing ability to answer
questions which bewilder them, repair machines they use and need,
to secure an increasing control over their ordinary lives?

“Neither one exclusively, but some of both” is the easiest an-
swer, but I doubt if it will work for the busy and hurried classroom
teacher who already has her hands full. She will teach science as she
teaches other material, be it by textbook, project, experience, or
what have you. She will take care of this curriculum baby the same
as she cares for the older members, no doubt wondering all the
while when birth control will be exercised in the educational family.

So far I've merely presented the controversial issue, perhaps
over elaborately, but because I want to give an opinion concerning
science it seemed necessary. Maybe it is just the inevitable pedagog-
ical prologue. Now for the opinicns.

First, science is a method of inquiry, not a subject. Science, as
is true of any method of inquiry, does not exist in a vacuum but in
relationship to the material subjected to inquiry. Please, or as the
children say, pretty please with sugar on it, do not take that one
sentence to mean that I recommend an abstract, unrelated “method.”
There is no such animal. Scientific inquiry in various areas has
given to us a tremendous body of subject matter of indubitable
value. It is our duty as educators to help children acquire much of
this information because they need it to live today. Yet it is a possi-
ble and frequent happening to see the results of scientific inquiry
taught in such 2 manner as to kill any spirit of investigation on the
part of the learner. And this in the name of science. We must realize
that a pupil can acquire a large amount of knowledge given him by
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science, yet remain totally without scientific ability to deal with any
problems on his own environment.

Just to avoid quibbling, it may be necessary to add that a child
who practices investigating, experimenting with, correcting and
controlling the ordinary features of his life will study, of necessity,
the organized knowledge of science. But the above statement is not
reversible. Repeat that sentence three times daily.

Second, we must decide whether or not our primary concern in
the elementary school is to be with the content or the method of
science. This is not an “either or” question, but merely one of em-
phasis. It is proposed here mainly as a forerunner of the next point,
but a few words of elaboration may help. This elaboration is going
to take the form of a specific classroom situation.

Two second grade children ran in from a recess indulging in a
heated “It does,” “It doesn’t,” flurry. The “does” and “doesn’ts”
were over iron, does it sink or float in water? Teacher would know,
hence must settle the question. She did very simply. There was an
empty tin can on her desk, and after convincing the skeptical young
minds that tin and iron were much alike she went with them to a
wash basin, filled it with water and let the children see the can float.
She then took a hammer, pounded the can into a lump of metal, and
let them see it sink. She took another can, punched a hole in the
bottom and let them watch it fill, then sink. She then told them about
boats and why a steel ship floats. In other words, she gave them a
complete and satisfactory answer to their questions, verbally and vi-
sually, without bothering to guide them through the process of dis-
covering the answer for themselves. Was she right or wrong? I do
not know, but will always feel it was one of the best jobs of inciden-

tal teaching that I've ever seen if one considers only the subject

matter or knowledge side of the question.

Third, do we want children to develop inquiring minds, together
with an emotional capacity to cope with the situations arising there-
from? Do not answer this one too fast.

Let us return to the first proposition, that science is a method of
inquiry, and add a corollary that all phases of human life, mechani-
cal, moral, political, religious, are legitimate fields of investigation.
Elementary school children do not come into direct conflict with
established patterns very often, but are helpless and submissive.
Nevertheless, circumstance is such that small children are becoming,
increasingly, the emotional victims of a bewildered adult society.

The above sounds highbrow and theoretical when one is sup-
posed to be considering science for elementary school children, but
itisn’t. Almost any day now some obstreperous young soul is going
to discover that not only are the habits of birds and bees and flowers
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and trees natural science, but that human beings come under the
same category. It has always seemed a strange paradox to me that
we humans consider ourselves so much superior to animals, but
when we want to teach our young natural science we have them
study beasts lest they become contaminated by knowledge of the
conduct of humans. Hence, I believe the average teacher, which is
all of us, should understand rather clearly the consequences of any
thoroughgoing science program that is concerned with inculcating
the inquiring attitude of science into the pattern of childhood behav-
ior. Our answers will be questioned; our right to give answers will
be questioned; the basis of our assumed authority will be ques-
tioned. We will have to face the task of dealing with children emo-
tionally and intellectually as opposed to the authoritarian basis of
school control which now predominates and will be faced with the
need of a teaching method based upon reasonable explanation in-
stead of flat statement. Of course, all of this is extreme, but not at all
improbable, and should represent the goal of teaching which is con-
cerned with the method as well as the content of science.

However, there is another important matter we must consider
which grows directly out of the points suggested in the preceding
paragraphs, especially one question. If we guide children into the
emotional and mental set of questioning and inquiring, how much of
life is it “safe” to let them question? If the experimental technique is
sound as a learning method, how far should the experimenting be
permitted to go?

Children haven’t acquired our knowledge of taboos and a priori
truths. There are a number of “correct” answers which we know are
correct “just because.” For example, respectable teachers do not in-
quire into validity of our structure of property rights, nor doubt the
soundness of our moral precepts in sex relationships. Young minds
trained to inquire and not accept might not be so acquiescent. Do we
want that? What about religion, the nature of patriotism, et cetera?
Do not forget that all Socrates did was to ask questions about things
respectable people were not supposed to question.

We all realize that science can be kept perfectly safe for elemen-
tary school children. We can give them little electric outfits, cute lit-
tle steam engines that whistle, and houses with glass fronts so we
can peep in on the private lives of ants. We can go further and have
a workshop where youngsters can repair simple machinery brought
from home and learn how to work safely with electricity, leaves,
and lizards. We can do all of this, and never let it penetrate the
child’s mind that science has any significance beyond a mechanical
one. However, let’s not deceive ourselves as to what we are doing.
We are not teaching science, a method of inquiry and control, except
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as applied to mechanical objects. Perhaps that is enough. Probably
we do not want humanity’s actions exposed to the light of scientific
inquiry or rational judgment. Obviously we do not want children to
develop an emotional mind-set which leads them to believe custom
is open to question. And I think we are wrong.

Suppose we became interested in helping children develop ex-
perimental attitudes and techniques in social matters. Then how
would we use science in the elementary curriculum? Briefly, we
must let them experiment with the curriculum. Insofar as the school
is concerned, the curriculum and its regulatory discipline is society
for the child. Through the construction of that curriculum, by the
nature of its attendant disciplines, we can contribute somewhat to
teaching the child to analyze, evaluate, and control his social envi-
ronment; or we can teach him to submit as graciously as possible to
imposed learnings and autocratic control. As we are learning from
world affairs, we must acknowledge that imposition and autocracy
are the antithesis of science in human life, yet we continue these
practices even in the teaching of science subject matter.

Why not guide children, even little ones, into establishing objec-
tives of learning? Why not aid them as they conduct experiments
with learning materials directed toward achieving these ends? Why
not assist them in evaluating their objectives, the experiments di-
rected towards achieving them, the results, and the construction of
new and better objectives? Quite simply, it can be stated in one more
question. Why not apply the rational, scientific method of action to
all of the learning in the public schools? Or are we afraid of it?

The few preceding paragraphs are all questions which we must
answer truthfully if we are concerned with real science in the cur-
riculum; however, I want to give the closing moments to some sug-
gestions for inquiry in an area which is sometimes overlooked in a
discussion of curriculum-- namely, the knowledge and the attitudes
of teachers. These two items are, in my opinion, the heart of any
curriculum, despite the voluminous tomes turned out by curriculum
experts.

This discussion is centered around science in the curriculum.
Supposedly we are all interested in it as a source of real value in
learning. What does science mean to us as adults in society, as
teachers in society? What is our concept of science as a method of
inquiry, as a guide to social action?

What we teach children in science is entirely dependent upon
what we believe. An obvious truism, but a neglected one. Yet, I'm
becoming worried about the attitude which says we human beings
can conquer the physical world scientifically but must depend upon
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dogma, superstition, and a reverence based on repetition to direct
our usage of mechanical power.

The last election is a good illustration of this point, and I shall
try to elaborate it. (By the way, do not take this as a plea either for
or against Roosevelt.) The present administration has done some-
thing which had never been done before in this country. It has fur-
nished us with information out of which we can frame intelligent
questions concerning the direction of our national future. The
National Resources Board, in its reports, is outlining clearly our po-
tentialities and our problems. This material is startling in its revela-
tions and, to anyone who will think, a source of enlightenment.
Despite that fact, this last election showed a distinct trend back to-
ward the mumbo-jumbo which produces starvation in the midst of
such plenty that one of our chief concerns is limitation of food pro-
duction. A bunch of monkeys in a coconut tree wouid have more
sense than to starve because there were too many coconuts.

Someone may ask, “What business is this of a science teacher?
We are interested in chemistry, physics, zoology, natural science, et
cetera. You are talking about sociology and things like that.”” No,
I'm talking about science, a method of intellectual inquiry in the field
where it is most needed, human relationships. I'm also talking about
the responsibility of science teachers for training children to become
accustomed to such methods of thought and action. Scientists,
above all persons, must realize that increased mechanical efficiency
directed toward achieving barbaric goals is not progress, but merely
animal cunning raised to a higher level. On the other hand, the use
of old tools to more humane ends is progress.

Germany, today, is a perfect example of mechanical science
dominated by brutish superstition. However, we do not need to
cross the ocean to find our examples. On Monday evening,
November 14th, Dorothy Thompson gave a brilliantly bitter speech
concerning the persecution of 500,000 Jews under the control of
Naziism. She did not mention the 2,000,000 sharecroppers living
under very near the same conditions here because of our supersti-
tious faith in capitalism. Water Lippmann once observed, in a bitter
attack on Fascism, “that if Democracy loses one election, there will
be no more elections,” but his columns are just as bitter against
workers in this country who presume to fight for a right to vote on
conditions of employment and wages.

What has all this to do with science? Do you suppose a person
accustomed to scientific thinking would be guilty of the above in-
consistencies? Perhaps, but let us hope not. We cannot go on much
longer creating twentieth century engines to appease the appetites
and sooth the gods of cavemen.
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Lancelot Hogben, the noted English scientist, has stated simply
and clearly the function of science as a social instrument. After dis-
cussing many of the beliefs which hindered progress he wrote:!

“In their place modern science now offers us a new social con-
tract. The social contract of scientific humanism is the recognition
that the sufficient basis for rational cooperation between citizens is
scientific investigation of the common needs of mankind, a scientific
inventory of resources available for satisfying them, and a realistic
survey of how modern social institutions contribute to or militate
against the use of such resources for the satisfaction of fundamental
human needs. The new social contract demands a new orientation in
educational values and new qualifications for civic responsibilities—
the power to shape the future course of events so as to extend the
benefits of advancing scientific knowledge for the satisfaction of
common human needs, guided by an understanding of the impact of
science on human society.”

In this statement is the true charter for science teachers, a de-
scription of their responsibility for liberating us from superstition
into the freedom to enjoy the fruits of our achievements.

1Hogben, Lancelot, Scientific Humanism, The Nation, November 12, 1938.
LU
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Precision in Science and
Arithmetic in the Elementary
School

Pearl A. Nelson
Boston University
(Vol. LXII No.9 December, 1962)

STATUS OF ELEMENTARY SCIENCE AND
MATHEMATICS

The importance of both elementary school science and mathematics
has long been established, although it is perhaps true that today’s
mathematical studies and research groups at the elementary school
levels have been given more prominence than those in the science
areas. Study groups investigating the learning development of
arithmetic concepts are making steady progress in many sections of
the nation, but although there is some research in elementary school
science relative to how children think scientifically, much research is
still in the formative stage.

Although the advocates of problem-solving methodology have
long recommended inductive approaches to science learning, most
elementary science text books still retain a preponderance of de-
scriptive science, and much lip-service is offered to teaching by
problem-solving.

It is true that, in the past, it was necessary that science at the
lower level be “bootlegged” under the term social studies. During
the past decade, however, elementary science, per se, has emerged
in dignity, with no apparent necessity for forced correlation with
history and geography. This is true of pseudo integration with other
subjects in the school curriculum, also, particularly language-arts
and reading. It is recognized that for long periods of time, science
was often a weak but concomitant part of the language-arts program,
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and children learned to write, perhaps not too creatively, while
reading directions on how to construct something or perform an
“experiment.” Learning how to outline paragraphs involving de-
scriptive science was a particularly offensive gimmick. In the read-
ing program a story on the conservation of wild flowers, or an
episode from the life of Louis Pasteur, often constituted the science
program ror the day or even for the week! It is an interesting obser-
vation that this forced integration has not occurred to such an extent
in the arithmetic program. Indeed, quite the opposite has taken
place. Science and arithmetic have normal integration, although
teachers have often failed to take advantage of the many varied op-
portunities that exist, and have always existed, in integrating the
science and arithmetic programs.

SIMILAR PURPOSES OF SCIENCE AND
ARITHMETIC

One of the fundamental purposes for teaching science to little
children is the same as the one offered for the teaching of arithmetic:
to help the child understand his environment, the many quantitative
and phenomenal aspects of it, and to help him develop in sequence
the concepts and skills which will allow him to pursue at a later date
these studies as they appear in specialized areas and fields.

The encouragement of rigorous thinking occurs in both science
and mathematics, although it is a matter of history that mathematics
pioneered first in the fields of problem-solving. It has become in-
creasingly accepted that before a child can attempt problem-solving
in science, he must be taught a method of approaching and solving
the problem. In the field of number, this teaching of procedure be-
fore attempting the solving of a problem has long been used.

There are many so-called “scientific methods,” and the current
investigations and studies are endeavoring to determine which of the
many methods is best suited for the elementary child of today. It has
been determined that once, by good inductive teaching, the child has
learned how to approach a problem and to work it through, he is on
the way to thinking and conceptualizing. As in arithmetic, kowever,
the student may go through the motions of writing down an answer
without actually knowing the meaning of either the question or the
answer. For decades. the meaning theory has been accepted by edu-
cators in the field of arithmetic as the most effective means for un-
derstanding and learning. Sducators have also long recognized the
importance of readiness in arithmetic. Pathetically enough, this has
not been the case in the field of elementary science. It is true that
some investigators have provided certain materials for the pre-school
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and kindergarten child, usually for the purpose of encouraging in-
troductory scientific discussions, but little groundwork has been of-
fered for recognizing science readiness at the primary level.
Currently, some excellent materials are being produced relative to
the training of the senses, with undertones of acceptance of the the-
ories and philosophies of the sense-realists of the past.

SOCIAL UTILITY OF NUMBER AND SCIENCE

Because of the priority of skill subjects in the primary grades,
increased time or emphasis on science cannot be advocated to the
detrimental effect on the reading program. Since communication
skills are so heavily emphasized in the lower grades, arithmetic as
well as science often takes a secondary or even tertiary place for a
valuable two-year period. This does not need to be. The social utility
of number as well as science may be emphasized as a felt need of the
child in understanding his own environment. The young person is
awakened by the sound of an alarm clock in the moring; he reads
the numerals to tell the time that he has arisen; he may watch his
mother prepare his breakfast by timing a 3-minute egg or stirring ce-
real for four minutes. As he eats, he may read the numbers in per-
cent on the back of the cereal box which tells him the amounts of
vitamins and minerals his bouy requires in a day. From morning
until evening the child’s day is normally replete with numbers and
science. Is this enough, then, for the young boy or girl who today
talks in terms of space travel, of the number of G’s an astronaut ex-
periences, and the virus epidemic which may be engulfing his com-
munity? Secondary school educators have long accepted the fact that
science and mathematics can be integrated quite normally for effec-
tual learning. Teachers of elementary grade children, and particularly
those in the lower grades, need to be alerted to the normal opportu-
nities which arise daily to integrate arithmetic and science. Precision
in working with and developing measurement and time concepts of-
fers excellent means of combining the two disciplines. A good sci-
entist is accurate; he measures amounts carefully; he follows direc-
tions with great respect. When large numbers are used, the child is
trained to make comparisons with other amounts, to determine
quantitatively how much, how much larger, wider, smaller, etc. He
makes analogies naturally. “This is like a cumulus cloud caly the
bottom of it is straighter. It is closer to the earth. How far is close?
Is it as far as near?”
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NORMAL INTEGRATION

It is recommended that there be no forced attempts to integrate
science and arithmetic in the elementary school. Rather, it is sug-
gested that the integration come about naturally, and that the teacher
be alert during the teaching of science to include accuracy of mea-
surement and time concepts in all teaching situations.

AVOIDANCE OF VERBALISMS

It is of great importance that the science and arithmetic teacher be
alert constantly to verbalisms, those parroted words and phrases
which have not real meaning and understanding to the learner. When
large numbers are used with little children, they must be written on
the chalk board and made as meaningful as possible by compar-
isons, analogies, and even by use of kinesthetic methods. The fol-
lowing represent suggestions in the field of science teaching, where
integration of arithmetic and science may occur with normalcy.
There has been no attempt here to provide a plan or plans for the
teacher to teach the following material. In fact, because of the close
normal integration of the two subjects, this listing may serve only as
a stimulus to the teacher who is not aware of this close association.

Research in elementary science has not revealed any definite
subject-areas for grade placement. Because of this, after each state-
ment a suggested grade or grades has been indicated where numeri-
cal as well as scientific understanding may occur.

1. The angle of incidence is equal to the angle of refraction.
Grades 5-6.

2. The speed of light 1s approximately 186,000 miles per second.
Grades 5-6.

3. Sound travels slowly, moving only one mile in five seconds.
Grades 3-6.

4. The speed of sound in water is about 4 times its speed in air.
Grades 4-6.

5. Echoes are heard as distinct, separate sounds only if they reach
the listeners’ ears one tenth of a second after the original sound.
Grades 3-6.

6. The middle C of a piano vibrates 256 times per second if the
piano is in tune. Grades 4-6.

7. Image persistence (a movie projector is constructed to make
each image persist for one twenty-fourth of a second on the screen;
the retina of the eye retains a picture for as long as one fifteenth of a
second after it has disappeared). Grades 5-6.
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8. The human ear is able to pick up vibrations ranging from 20 to
20,000 vibrations per second. Grades 4-6.
9. Destructive vibrations. Thousands of pages of calculations are
necessary to insure the safety of plane passengers. High velocity
affects wing vibrations. Grades 3-6.
10. During the launching of an ICBM or satellite vehicle, its posi-
tion is carefully monitored and calculations made by large computers
on the ground in regard to its flight path. Grade 6.
11. Digital computers have been developed for use 1n aircraft to
determine the course required for target interception. Grade 6.
12. Combat planes used to fly at speeds of 250-400 miles per
hour. Today, their speed is 3 times as great. Grades 5-6.
13.  The core of the new atomic energy plant will be about the size
of a 55 gallon drum. Grades 4-6.
14, A new dry cell has an electrical push (volts) of about 11/,
volts; a storage battery in an auto, 6 volts; house circuits have 110-
120 volts.
15. The length of time an element remains radio-active is stated in
seconds, minutes, days and years. Grade 6.
16. Metals and their melting points. Gallium, an unusual metal,
melts at body temperature. It will not boil until heated to a tempera-
ture of about 3,000 degrees Fahrenheit. Grades 5-6.
17.  About 10 million atoms would stretch across the head of a pin.
Grade 6.
18. One cubic centimeter would equal a cube 1/2 inch on all sides.
Grade 6.
19. Plant researchers and farmers have in store for us within the
next 10 years: grapes as big as plums; midget watermelons that
won’t crowd the refrigerator; blueberries the size of large marbles.
Grades 3-6.
20. The poppy seed became a means of precise measure in the
1700s. One inch was divided into 3 barley corns, and each barley
corn equalled 4 poppy seeds. Grades 4-6.
21. Today, we have approximately 478 million acres of good
cropland. We shall need an added 140 million acres of cropland to
produce what we will consume in 1975. Grade 6.
22. The keeping of a daily weather calendar. In the lower grades,
simple symbols for rain (umbrellas) and clouds (cotton) placed at the
date-space; at the upper level, actual weather symbois, degrees of
barometer and thermometer readings may be taught; weather instru-
ments constructed and calibrated. Grades i-6.
23. The troposphere varies in height from 10 miles at the equator
to about 5 miles at the poles. Grades 4-6.
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24. Carbon dioxide makes up only 3-hundredths of one percent of
air. Grade 6.

25. Moist air is lighter than dry air because a large percentage of it
is water vapor. Grades 4-6.

26. The jet stream is about 300 miles wide, but varies in its form
and position. It occurs in cycles of from about 4 to 6 weeks. Grades
4-6.

27. Tornadoes are much smaller in area than hurricanes, averaging
about one fifth of a mile in diameter. Grades 5-6.

28. Lunar explorers would need to avoid extremes of temperature
from 260 degrees Fahrenheit during the two-week lunar day to -270
degrees Fahrenheit during the lunar night. Grade 5-6.

29. One space vehicle carried animals, weighed 3 tons and circled
the earth 17 times at an aititude of 200 miles. When it returned to
earth it was only 6.25 miles off target. Grade 6.

30. The United States Air Force snagged the capsule of Discoverer
XTIV at a height of 8,500 feet in mid air. Grades 5-6.

31. Satellites have revealed to us that the earth has a 50 foot de-
pression around the South Pole, a 25 foot bulge around the North
pole, and a 25 foot depression around the North Mid Latitudes.
Grades 4-6.

32. The sun is 93,000,000 miles away from the earth. Grades 4-6.
33. The crust of our earth is from 10-25 miles thick. Grades 3-6.
34. Evidence suggests that the innermost core of the earth is a very
hot liquid. It is probably about 2,160 miles in radius. Grade 6.

35. American scientists use the metric system in their scientific
work. Grades 5-6.

SUGGESTED RESTATEMENTS AS PROBLEMS

The above sampling of evidence relative to the simple and nor-
mal integration of science and arithmetic may well lead the way to
further brainstorming in the area. Certainly, to insure thinking and
meaning, it will be necessary to re-state these declarative statements
in the form of questions or problems. For example, Number 35
might be presented: “Why do we learn one number system in school
and then have to learn another way when we get to high school, or
read science books?”

SUGGESTION TO TEACHERS
If the above compilation of samples of the normal integration of

science and arithmetic has quickened an interest in furthering the
cross-fertilization in this area, it is suggested that certain areas in
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science be explored as an initial approach. It may be as simple as a
unit or study on weather which is taught at any elementary school
level. How many tablespoons of baking soda did we add to the cup
of vinegar? How many inches of water were shown on the rain-
gauge? What number was the mercuzy of our thermometer on when
we placed it in the shade? How much is 15 pounds per square inch:
indeed, what is a square inch?

PRECISION A NEED TODAY

Measurements must be very accurate in our world teday. In the
past, a yardstick passed the test often as a precision instrument, but
in this age, dimensions of all kinds must be within a thousandth of
an inch. Things must fit together just right. Specifications must be
followed accurately so that assembly lines can run smoothly. The
day of the elementary teacher pouring “some” baking soda into
“about two tablespoons” of vinegar is outmoded. In fact, this type
of introduction to scientific learning and thinking is as dangerous
and as inaccurate as learning multiplication “tables” without meaning
or drawing the design of a hot-air furnace into the science notebook
directly from the text with no understanding and concomitant learn-
ing.

Once the relationship between measurement and scientific accu-
racy has been established, the elementary teacher should have no
problem in accepting the interchangeability of the two subject areas.
Accuracy is indeed one of the keystones to excellence in science
whether at the industrial, professional, secondary or elementary
level. As accuracy permits mass production in industry, so will pre-
cision in science measurement at the elementary level foster a healthy
respect for number and arithmetic, which, in turn permits a mass
production of intellectually alert children--the hope of the nation.
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A Look at the Integration of
Science and Mathematics in the
Elementary School-1976

William R. Brown and Curtiss E. Wall
Old Dominion University
(Vol. LXXVI No.7 November, 1976)

The elementary teacher in 1976 is faced with several dilemmas.
Thic specialist with young children is expected to teach content from
several disciplines such as language arts, mathematics, science, so-
cial studies, art, music, and physical education. Children are to be
prepared to progress through an educational system that, for the
most part, has given little thought to the interrelated aspects of dis-
ciplines; that does not functionalize the articulation of grade levels so
that a child really continuously progresses from kindergarten to
grade twelve; and that is currently placing a major emphasis on the
reading component of language arts and the computational aspect of
mathematics.

How can an elementary teacher cope with the numerous de-
mands of society? How can mathematics be designed so that adults
will be able to balance a checkbook (assuming that a cash-less soci-
ety has not evolved by the time current elementary-age children be-
come adults) and at the same time develop an understanding of the
structure of that discipline called mathematic.? Can science curricula
deal with major concepts and with process in a K-12 program? What
will children read about and talk about in language arts?

A way of treating the dilemmas of a massive amount of mate-
rial, interrelatedness of disciplines, articulation of grade levels,
“practical” application of ~ontent, concept and process emphases,
and the structure of disciplines is to integrate those facets of tradi-
tionally-defined disciplines where commonalities interface.
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There have been renewed calls for efforts to integrate science
and mathematics. The Third Cambridge Conference! is a notable ex-
ample. However, the idea that we should NOW integrate science
and mathematics is fallacious since the two have never been concep-
tually separated. One discipline cannot advance indefinitely without
the other, as many mathematicians are rediscovering to their dismay.
At times the impetus for new lines of research in mathematics comes
from science. On the other hand, mathematics developed as “pure
mathematics” years ago is currently being applied by scientists to
explain present advances in science.

It should be apparent that science and mathematics may be re-
lated in several ways in our elementary schools. There is a contin-
uum from mathematics for the sake of mathematics to science for the
sake of science. Between these two extremes lie at least three points
of importance: (1) mathematics for the sake of science, (2) mathe-
matics and science in concert, and (3) science for the sake of mathe-
matics. Any program that does not include all five points on this
continuum is not representative of both disciplines and the related
aspects of both fields of study. Unfortunately, only the two cate-
gories at the ends of the continuum have a long history in U.S. edu-
cational programs. This exclusion, among other reasons, has led to
the poor teaching of mathematics and science in our schools today.
Mathematics and science are typically unrelated subjects taught as
two different “worlds.” Numerous “new’’ mathematics and science
programs have evolved in the past twenty years to attempt to change
the styles of teaching from a “take-it-here-it-is” style to an involve-
ment, hands-on approach. The learning theories of Jean Piaget,
Zoltan Dienes and others shed doubt on the abstract, non-involve-
ment approach of some versions of “new math” and many science
series. Children learn mathematics and science by doing, as exem-
plified by the old Chinese proverb:

I hear and [ forget
[ see and I remember
[ do and I understand.

The doing emphasis has given birth to mathematics laborato-
ries and hands-on science projects. Six areas of learning that are
common to mathematics and science can be dealt with in a hands-on
laboratory setting: (1) sorting and classifying, (2) measuring,

1Goals for the Correlation of Elementary Science and Mathematics, Houghton
Mifflin Co., 1969.
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(3) using spatial and time relationships, (4) interpreting data,
(5) communicating, and (6) formulating and interpreting models.
The remainder of this paper deals with these six categories
with an emphasis on how mathematics and science are related.
Examples of available materials are cited in each category. No at-
tempt has been made to dictate or even suggest a program of study.

I. Sorting and Classifying--

Teachers must begin with what the child knows. What does a
child know when he enters school? He knows about the concept of a
set. He has heard about sets of dishes, herds of animals, families,
church groups or club members. However, this concept must be re-
fined. Sorting and classifying are activities that increase precision in
the child's thinking. A child begins by sorting a group of objects
into two sets, e.g. rough vs. smooth. Then he sorts his objects
again using a different criterion. A child should always try to sort,
classify, compare and contrast in more than one way using a differ-
ent criterion. In this manner he begins to characterize sets of objects
by their attributes and values of these attributes, e.g. the attribute is
color and values are red, green, blue. Sorting and classifying also
lead to more sophisticated operations with sets. If a child sorts a
group of objects using values from different attributes, intersecting
sets result. For example, suppose the child chooses the values meral
material and red color. The following sets would result: (1) objects
neither metal nor red, (2) metal objects but not red, (3) red objects
but not metal, and (4) objects both metal and red. This could be rep-
resented by the following Venn diagram (Figure 1).

Figure 1 This is an excellent illustration of intersecting sets.
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Scientists and children who do science typically collect data. The
term “raw data” may be used to infer the state of unorganized obser-
vations. How can these raw data be organized? One way is to exam-
ine attributes of the phenomenon under study and to assign values to
these attributes. The Periodic Table of the Elements is an example of
organization based on attributes and properties. A dichotomous key
to woody plants is another example. The two examples cited have
been devised to give functional order on what would be a chaotic
mass of data.

Children can construct their own organizational schemes such
as the Venn diagram mentioned earlier or by a dichotomous key
(Figure 2.) Subset D corresponds to Set 1 on the Venn diagram;
subset C corresponds to 2; subset B corresponds to 3; and subset A
corresponds to 4.

Set of Objects

Red | Not-Red

| Color |
Subset A, B Subset C, D
Metal Non-Metal Metal |  Non-Metal
| Material | | Material |
Subset A Subset B Subset C Subset D

Figure 2

Several examples of commercial materials are appropriate for
developing, sorting, classifying, and working with sets. The
Elementary Science Study (ESS) unit called Artribute Games and
Problems has four components useful in sorting and classifying2.
Color Cubes, A-blocks, People Pieces, and Creature Cards all pro-
vide varied but redundant experiences for children grades K-8. The
Material Objects unit of the Science Curriculum Improvement Study
(SCIS) aids children in grade-level one to identify properties of ob-

2Elementary Science Study, McGraw-Hill Book Co., 1969.
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jects and to organize these properties into useful schemes3. Children
manipulate buttons, geometric shapes, pieces of wood, metals,
rocks, shells, liquids, gases and other familiar objects.

Classification is a formal topic in the Science--A Process
Approach Il program (SAPA)*. Module Four uses leaves, nuts, and
seashells to introduce classification. Animals, familiar things, terrar-
ium organisms and mixtures are used in modules 14, 16, 32 and 42.
All these modules deal with the identification of similarities and dif-
ferences that can be assigned values. Module 56 introduces a punch
card system where two values of an attribute may be coded as a hole
or a notch. Cards are coded and separated by values of attributes
determined by children.

Of course a teacher does not have to buy commercial materials.
A shoebox or coffee can full of asscrted objects obtained locally can
be used in sorting, classifying, working with sets, and for counting.
The use of locally-obtained materials also has the advantage of
“personalizing” learning materials.

The repetitive experiences of sorting and classifying can be
used as a basis for building a number system and its operations.
Raw data can be organized in a functional manner as a result of
hands-on manipulative experiences with familiar concrete objects.

II. Measuring--

Reference is made to SAPA, SCIS, and ESS as these pro-
grams are representative of the distinct approaches to science educa-
tion. SAPA emphasizes process; SCIS is concept oriented; and phe-
nomena are the basis for ESS. Several other commercial programs
are available that deal with the six major topics in this paper.

Several of the SAPA modules formally deal with measuring.
One sixth of the modules for K-3 emphasize measuring. Topics
such as length, volume, metric, use of a balance, distances, forces,
temperature, and moving objects are the content areas of these
modules.

The Match and Measure unit of ESS provides several activities
for primary children in comparing objects, in using arbitrary units,
in using standard units, and in experiencing many modes of measur-
ing such as meter sticks and long strips of paper. ESS Pattern
Blocks are also useful in measuring.

It would seem that good pedagogy as well as the integration of
science and mathematics dictates a certain order for the teaching of

3Science Curriculum Improvement Study, Rand McNally and Co., 1970.
4Science--A Process Approach II, Ginn and Co., 1974.
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measurement concepts. Children should begin by simply comparing
objects, e.g. object A is heavier, longer, or larger (area or capacity)
than object B. Then the student proceeds to order several objects.
Next, objects can be compared by the use of nonstandard units of
measurement. Through the use of nonstandard units, several new
concepts can be introduced without confusing the child. First, stu-
dents should learn the need for standard units since they will be un-
able to compare results such as their height or the length of a table.
Second, the concept of a unit of measurement is emphasized without
the confusion of parts of uuits. In order to learn this, children fill out
a table as illustrated in Figure 3.

Unknown Unit Object | Greater Than Less Than Closest To
Object

Side of Desk Straw 5 6 6

Figure 3

Here the student is forced into the answer of 6 rather than an answer
like 5 3/4 straws. Third, accuracy and precision are best learned
with nonstandard units, since it is much clearer that the smaller the
unit the more precise the measurement.

Accuracy, the agreement of an observed measurement with the
actual or true value, is important in quantifying science. Students
typically do not have trouble with this idea as they are willing to ac-
cept standard methods and units of measure.

Precision presents a problem to many students and to many
teachers. The agreement among observed values ii. repeated mea-
surements lends support to reported results. For example, a student
should be able to rank order the precision of the following measur-
ing devices by taking repeated measures and by determining the
mean and the range of obtained values. If a graduated cylinder cali-
brated in milliliters is used to measure the capacity of a non-cali-
brated container; if a meterstick calibrated in mm. is used to measure
the length of a table; and if a spring scale in newtons is used to mea-
sure the force required to move an object, the results should indicate
the relative precision of these instruments. If the table length is 26 +
1 mm., the capacity is 35 + 3 ml,, and the force is 20 + 10 newtons,

SHart, Alice. University of Illinois, Chicago Circle Campus.
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the instruments are ranked meterstick, graduate, spring scale in
order of precision.

After having learned the concept of measurement, the child is
ready to proceed to measurement with standard units. The metric
system should be taught before the English since it is used in
science. Also, the student will become more proficient in the system
taught first. Only after the student has mastered the preceding steps,
ratio, proportion, and decimals should he be concerned with con-
version from one system to another.

The metric system is here! Children can establish personal ref-
erence points that will aid them in “getting a feel” for metric units.
For example, if a child knows he is 120 cm. tall, he can judge that
something 10 cm. long is a lot shorter than he is and that something
1,000 cm. long is a lot longer than he is. Similar reference points of
mass and capacity help students to interpret metric measures.

Many non-commercial materials can be used in measuring. For
linear measurement a teacher could use straws or popsicle sticks for
non-standard units and assorted scrap pieces of wood or objects in
the room as unknowns. For mass, one can use paper clips, marbles
or poker chips as standard masses, and any object as an unknown.
Plasticene can be used to make up standard masses. When measur-
ing capacity, the children and teacher can collect different sized jars,
cups, and cans. Rice, corn, beans or sand can be used to compare
capacity.

Area presents a special problem because of its relationship to
linear measurement, i.e. area of an object equals the linear unit
squared. For example, the English system measures in square
inches. Consequently, in filling out a table the child may obtain re-
sults as shown in Figure 4.

Unknown Unit Greater Than Less Than Closest To
Desk Top Triangle 30 35 33
Figure 4

This diminishes the accuracy of area measurements. The ESS
Pattern Blocks, or ceramic or plastic tiles, make good unit measures
for area, although a teacher may use homemade shapes. Unknowns
may be irregularly shaped pieces of paper or wood. Another ESS
unit that is useful for the study of area is the Tangram unit (Figure
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5). For example, let the area of @ = 1. What is the area of b, ¢, d, e,
f, g or some combination of these shapes? Tangrams can also be
used for the study of congruence and similarity.

Figure 5

II1. Using Spatial and Time Relationships--

Essential to the study of any aspect of science is the descrip-
tion of the physical environment. Topics included are spatial rela-
tionships and their change with time, geometric shapes, symmetry,
motion, and rate of change.

Recognizing and using two-dimensional shapes; direction and
movement; spacing arrangement; three-dimensional shapes; shad-
ows; symmetry; lines; curves and surfaces; rate of change; and rela-
tive motion are the topics of nine modules in SAPA K-3 that are i-
rectly oriented to using space-time relationships.

In the SCIS programs, level four deals with the topic of rela-
tive position and motion. Children use a stick figure, Mr. O, to re-
late to positions such as above Mr. O, below Mr. O, to Mr. O's
right, behind Mr. O, and close to Mr. O. Mr. O is placed in situa-
tions where objects are moving and position is relative to a particular
point of reference. The topic of coordinates is introduced as the need
arises to locate points in space.

The ESS series has several units related to space-time relation-
ships. Mirror cards are excellent devices to practice with symmetry.
Geo blocks can be used to teach geometric shapes and the relation-
ships of various shapes. Units such as Shadows and Daytime
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Astronomy deal with abstract ideas in concrete situations. Relative
positions of the earth: and the sun are difficult for youngsters to com-
prehend unless they have the types of hands-on experiences exem-
plified as ESS.

Topics such as linear speed, circumference and diameter of a
circle, and the relationships of circumference and the diameter of a
circle can be illustrated by easily obtainable items. Take three or four
different sized jar or can lids and measure the circumference of each
one by carefully surrounding it with a length of string. Determine
the length of the circumference by holding the taut string along a
meterstick. Measure the diameter of each lid using a string and a
meterstick. Divide the circumference by the diameter. Students will
have calculated the value pi (7r) This act1v1ty also reinforces the
principles of accuracy and precision since it is unlikely that 3.14 will
be obtained with each operation. Students can now relate to the for-
mula C = zD. The relationship can now be used to solve such
problems as calculating the linear speed of a man standing on the
geographic equator of the earth if you know the diameter of the earth
at the equator.5

Using space and time relationships is essential in science and
employs many types of activities traditionally associated with math-
ematics.

IV. Interpreting Data--

In science and mathematics, process should be considered as
important as cognitive learning. It is the process that develops new
science or mathematics, and the process is the same for both disci-
plines. A beginning point is to ask questions and to be curious about
the environment, whether it be “why does an apple fall to the
ground?” or “how does our place value system work?” Data perti-
nent to the question must then be interpreted, and the data are col-
lected as a result of some experiment or activity that will provide in-
formation. The data must then be interpreted, and the data are most
frequently in some mathematical form. This implies that they must
be interpreted mathematically. The next step is to form some hy-
pothesis and to determine its validity. Here science and mathematics
part company since the truth or falsity of a statement can be deduc-
tively determiined in mathematics with the exception of open ques-
tions where the hypothesis is in doubt. In science a hypothesis may
be rejected or supported, but never proven in an absolute sense.

6Brown, W. R., Handbook of Science Process Activities, Education Associates,
Inc. 1974.
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Data are usually presented in the form of tables or graphs so that
students search for patterns in order to formulate interpretations
and/or new hypotheses. There are many scic ace programs based on
these principles; SAPA is one. Several modules in the series 61-105
for grades 4-6 place an emphasis on data interpretation.

In both SCIS and ESS the interpretation of data is a built-in
on-going activity. Students interpret data they have collected by ob-
serving living communities and by shooting stopper-poppers in
SCIS. Clay Boars, Behavior of Mealworms, Growing Seeds, and
Optics are examples of ESS units where students are involved in
collecting and interpreting various forms of data.

The Madison Project is a collection of lessons dealing with
modern mathematics topics with a hands-on or mathematics labora-
tory approach. Graphing, interpreting data, and making inductive
hypotheses are integral aspects of each Madison Project unit
(although this was not the original intent of the program). These
units are commercially available as sets of boxes’. Each box con-
tains task cards and appropriate materials to complete the tasks.
Units dealing with masses and springs and with circles are appro-
priate to science.

V. Communicating--

Communicating is a process not only of science and mathemat-
ics but of all human endeavors. Clear, precise, unambiguous com-
munication is desirable in any activity and is fundamental to all sci-
entific work. Comirnunication can be by oral and written words; by
diagrams and pictures; by maps; by two and three dimensional
graphs; by table, by expressions of central tendency such as the
mean, median, mode and range; by mathematical equations; and by
various kinds of visual demonstrations.

Seven of the K-3 SAPA modules, starting with module 22,
place a formal emphasis on comrunicating. Several of the topics
listed in the preceding paragraph are the content of these modules.

The communicating process is important in all ESS, SCIS,
and SAPA activities. One of the common features of these three pro-
grams is the lack of a student text. Students do not read about what
someone else found out but are instead involved in generating data
of various types. In these three programs, students MUST be pro-
vided with opportunities to represent, pool, and discuss their obser-
vations.

"Madison Shoe Boxes, Math. Media Inc., 1960.




A major emphasis on reading is a phenomena of the U.S.
schools of the 1970s. This emphasis may bhe important, but perhaps
youngsters should also have in-depth experiences in oral communi-
cation. The content of science can provide something for children to
talk about, something for them to read about, and something for
them to write about. One hopes that the “cookbook fill-in-the-
blanks’ laboratory guides are a historical facet of elementary science
education. The hands-on activities under the banner of science and
mathematics may serve as vehicles to make communication, in all
forms, a functional skill.

VI. Formulating and Interpreting Mcdels--

An adult understanding of scientific concepts is highly ab-
stract. A useful way to represent the physical world is to create
mental models of systems or phenomena that have mathematical
equivalents. An atom is a mental model created by man to explain
his physical environment. This model is constantly subject to modi-
fication as man extends his observational ability by the use of tech-
nological devices.

A characteristic of models is that they have predictive compo-
nents. If an atom of hydrogen has been modeled, the model can be
tested in the physical world. If oxygen does indeed combine with
two atoms of hydrogen to form water, then the model is supported.
An additional component of a water molecule model is the expres-
sion of water as a dipole. This model can be useful in predicting the
properties of water.

The SCIS program formalizes the idea of models in the sixth
grade unit called Models: Electric and Magnetic Interaction.
Electricity and magnetism are abstract phenomena that may be math-
ematically modeied. The sixth-grade life science unit in SCIS is
called Ecosystems. In reality an ecosystem is a model of the bi-
otic/abiotic world. Cycles such as the water cycle, the food-mineral
cycle, and the oxygen-carbon dioxide cycle are models of phenom-
ena that help to build a model of cycles in general. The recycling of
beer cans can be related to a general model of cycles in the physical
world.

ESS units such as Bulbs and Batteries, Heating and Cooling,
Kitchen Physics, Mapping, and Pendulums deal, to some degree,
with formulating and interpreting models.

Several ESS units designed for science also facilitate the devel-
opment of mathematical concepts. The pattern biocks have already
been mentioned as being useful in measurement. However, with the
addition of mirrors they can be useful in the teaching of transforma-




tional geometry. They can be used to teach the relationship of differ-
ent shapes (triangles form a hexagon).

Another ESS unit already mentioned is Tangrams. They are
useful for teaching congruence and similarity. For instance a, b, and
¢ form a shape similar to d (see Figure 5). Also, shapes a, b, ¢, d
and e form a shape congruent to f and g. There are an almost unlim-
ited supply of such questions that children can answer through the
manipulation of these objects.

The ESS unit Mirror Cards is particularly useful in the study
of symmetry. The cards increase in difficulty as one proceeds
through the box. The first levels could be used by kindergarten or
first graders with no difficulty.

Geo Blocks, another ESS unit, is designed to increase a stu-
dent's perceptual abilities in the three-dimensional world. However,
the shapes are quite useful in the teaching of solid geometry and the
relationship of three-dimensional objects. The similarity of three di-
mensional objects is also quite apparent when the differ<nt sized
cubes are stacked one on top of the other from largest to smallest.
Also, by using wax paper or tin foil the student can “look” inside the
objects to study their structure.

Two More Programs--

In addition to the sources listed previously, two programs are
commercially available that integrate science and mathematics. The
Minnesota Mathematics and Science Project (Minnemast) is a pro-
gram of twenty-nine units in mathematics and science for early
childhood8. The units are intertwined and sequenced spirally
although some deal only with mathematics or science. It is an active-
learning, laboratory situation where the mathematics is coordinated
with the science units. The units emphasize the contribution of both
disciplines. The aim of the units is the development of the child's
logical processes. The following concepts are emphasized: real
numbers, geometry, system, change, interaction, reversibility, in-
variance, space, time, matter, force, and field. Processes empha-
sized are observations, experimentation, and generalization. The
originators of Minnemast feel that their program is based on the psy-
chology of Bruner and Piaget. This is important since the project
was begun in the early 1960s when mathematics educators had not
yet “discovered” and applied the work of Bruner and Piaget.

8Minnesota Mathematics and Science Project, University of Minnesota, 1970.

15

124




A more recent project (early 1970s) is USMES (Unified
Science and Mathematics for Elementary Schools). The originators
of USMES feel that their program is based on the goals of the Third
Cambridge Conference. USMES is composed of twelve indepen-
dent teaching unis that integrate mathematics, science, language
arts, and social studies. Real-life problems called challenges are pre-
sented for the class to solve. The work of every class is different
since circumstances differ depending on the needs and the interests
of each school environment. USMES units are not designed to re-
place the regular mathematics, science, language arts, and social
studies curricula. This is an enrichment, problem-solving series that
may be used in addition to more traditional discipline-oriented
lessons. Examples of USMES units are Lunch Lines, Consumer
Research-Product Testing, Advertising, Burglar Alarm Design,
Traffic Flow, Weather Prediction, and Soft Drink Design. The
names of the units imply the problem-solving, interdisciplinary na-
ture of the program.

It should be evident that there is a wealth of materials available
at the elementary school level that can be used to integrate at least six
aspects of science and mathematics. Besides the abundance of mate-
rials, an additional factor that favors the integration of mathematics
and science is that these disciplines complement and motivate each
other. A basic premise of this paper is that a hands-on laboratory
approach will be most suitable in the implementation of the six ar-
eas.

I hear and I forget
I see and I remember
I do and I understand.

Now that you have seen an argument for the integration of science
and mathematics, please try some of the ideas presented and you
will understand!

9Unified Sci:nce and Mathematics for Elementary Schools, Education
Development Center, Inc., 1973.
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Education during early childhood is generally based on an infor-
mal, experience-centered curriculum philosophy. If it is safe to con-
clude that humans live “in a world of concepts rather than a world of
objects, events and situations,” then it is safe also to conclude that
the child must become oriented and begin to live in that world
(Ausubel, 1968). How the orientation process takes place and what
pedagogical intervention bést encourages that process is still hypo-
thetical. From experience and training, the teacher acquires the dis-
position to justify, give reasons for, setting up a particular class-
room environment from the perspective of child growth and devel-
opment. This perspective claims that through experience children
acquire concepts naturally as they interact with the environment. The
concepts to be acquired are not explicitly presented but hidden
within the objects and materials, activities, games and social simula-
tions that are offered to the child.

The authors believe that complete dependence on concepts to
present themselves by the mere existence of materials and activities
in the classroom is in error, especially science and mathematics con-
cepts. The teacher needs to plan and assess for instructional effects
as well as nurturant effects (Joyce & Weil, 1980). The following as-
sumptious are delineated from thi¢ position:




1. To assure conceptual learning will take place, structured in-
teractions between child, teacher, and material will be designed by
the teacher highlighting science and mathematical concepts which
may be hidden in the inforrnal curriculum of early childhood educa-
tion.

2. To assure clear communication of concepts, the teacher will
consciously plan classroom activities with language enforcerent
which invites the child to rationally attend to these concepts.

3. To assure a viable, open attitude toward science and mathe-
matics via concept development, the teacher will plan classroom so-
cialization and structured activities in order to enhance self-correc-
tion, child deference, and tolerance for learning from incorrect re-
sponses as well as correct responses.

The purpose of this article is to deal with these philosophical as-
sumptions in the following manner. First, we will discuss our view
of the cognitive processes characteristic of the early childhood
learner as well as the potential benefits of learning through “incorrect
responses.” Secend, we will delineate the science and mathematical
concepts that we believe are within the early childhood learner’s
cognitive capabilities. Finally, we will illustrate how science and
mathematical concepts, which are presently in traditional classroom
activities, can become more visible and viable in an early childhood
setting.

Learning Concepts in Young Children

In order to design instructional activities where the concepts are
communicated with clarity, the teacher should consider the devel-
opmental theory of Jean Piaget (Copeland, 1979). According to this
theory, the early childhood learner’s conceptual thought structures
are preoperational. The following description briefly characterizes
the nature of concept development in the young child: preoperational
children are egocentric, seeing themselves as the center of their im-
mediate environment; they are pre-logical in their thought structures,
causing them to be unable to reverse those thought processes when
relationships between physical objects are varied; they are unable to
conserve invariant properties of physical objects, and they cannot
see the “part” in relation to the “whole”; the thought processes of the
child who is in transition from preoperational to operational thought
are in a state of disequilibrium.

Since we are subscribing to Piaget’s theory, which is develop-
mental in nature, we believe that the learners are necessarily going to
be revising and refining their view of the world. This process of re-




vision and refinement of knowledge is what Henry Perkinson
(1979) refers to as “learning from our mistakes.”

“Learning from mistakes,” Perkinson believes, is a common
theory shared by leading twentieth century educational theorists such
as John Dewey, Maria Montessori, A. S. Neill, Jean Piaget, Carl
Rogers, and B. F. Skinner (Perkinson, 1979). For example,
Piaget’s theory confirms that children are active, not passive, learn-
ers of concepts, seeking order in their world. Perkinson had devel-
oped a non-justification theory of teaching, applying Sir Karl
Popper’s philosophy of fallibilism (Perkinson, 1969). Briefly, fal-
libilism is a position about rationalism and truth based upon such
notions as: human beings are fallible and certainty is denied them;
secondly, coherence and consistency are not criteria for truth, but
incoherence and inconsistency do establish falsity (Perkinson,
1969); finally, though absolute truths do exist, obtaining absolute
truths about the working of the universe is impossible, particularly
by inductive reasoning. However, by eliminating error in our theo-
ries we can get closer to the unattainable goal of absolute truth
(Swartz, et.al., 1980).

Perkinson sees the fallibilist teacher as one who creates a free,
but responsive, environment where the children are fallible creators
of knowledge (Perkinson, 1980). The teacher will treat knowledge,
called subject matter, as conjectural. The teacher, through dialogue
with the learner, will focus on critical feedback aimed at guiding the
learner in the identification of errors in concept formation (Perkinson
uses the term theory instead of concept because theories can logi-
cally be true or false.) The teacher must see to it that children receive
this critical feedback. In this role as a critic in a free and responsive
environment, children will learn the critical attitude and, as John
Dewey suggests, become problem solvers (Perkinson, 1969).

Teachers who subscribe to this position will note that their in-
structional goals are to teach for understanding, and that the empha-
sis in the classroom is on exposure to ideas and materials, not on
mastering a body of factual information.

The content which is appropriate for the preoperational learner in
an environment which emphasizes revision of knowledge is that
content which is within the realm of a child’s ability to understand.
Since our position has been that the early childhood learner is in the
preoperational state, we feel that the content or activities which are
appropriate are those which move ihe child in the direction of opera-
tional thought. To encourage this facilitation, we must take into
consideration that this child is one who is not yet exhibiting, but is
developing, the Piagetian cognitive structures: 1) Conservation of
number, 2) Seriation and an understanding of ordinal numbers,
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3) Multiplicative classification, 4) Multiple seriation, 5) Conser-
vation and measurement of length, 6) Hierarchical classification,
7) Class inclusion (Copeland, 1974). For the child who is develop-
ing these cognitive structures, the curricular content for mathematics
and science should deal with: scientific observation and limited in-
terpretation of the observed data; classification; patterning; introduc-
tion of measurement; seriation; one-to-one correspondence; equali-
ties and inequalities; and discrete quantification.

Visible and Viable Activities

The following activities for which we have developed modifica-
tions are representative of those commonly found in the early child-
hood classroom. In critiquing these activities, we find two types of
problems frequently occurring. The first problem occurs when the
teacher does not do enough to facilitate the observation process
which is vital to the child’s development of knowledge. The second
type of problem is an activity in which the situation presents erro-
neous information and allows the child, through observation, to
draw incorrect theories without providing the critical feedback nec-
essary for revising “incorrect” to “correct.”

ACTIVITIES TO ENCOURAGE OBSERVATION
SKILLS

I. A. Content: Seed Germination-- Every Spring there seems to be
proliferation of seed germination activities in the early child-
hood classrooms. The activity ordinarily consists of the chil-
dren planting various seeds in some growth medium: dirt,
sponge, paper towel, or other easily obtained, non-toxic
materials.

B. Problem: Each child usually plants individual seeds, labeling
the container with his or her name, and then places it in a
light source. The next child contact is often when the sprout
reaches the surface and is visible. When the activity proceeds
in this way, the benefits of observation during the germina-
tion process are lost. Since we are dealing with the preop-
erational child who is unable to visualize the intermediate

phases, the concept of germination as a gradual process is

not emphasized.




IL.

C. Modifications: The most important modification might be the

careful selection of materials for planting. The use of trans-
parent containers and the arrangement of a growth medium
that would force the seed against the side of the container
would facilitate observation. Once the child has planted the
seeds using these materials, the teacher might ask the child to
draw a picture of the seeds in the container. This step in the
activity assumes that the child’s art development is at the rep-
resentational stage. If the child is not at the representational
stage, the teacher might encourage a discussion about the
newly planted seeds, audio-tape recording it for future com-
parisons. As an extension of this activity, the teacher should
lead the children in an audio-tape recorded brainstorming
session during which the children make predictions about
what will happen to the seeds.

Each child should be responsible for the daily care of his or
her seeds, perhaps using rebus picture directions demon-
strating what the child is to do and in what order. While the
children are watering their seeds, the teacher can encourage
them to observe any changes occurring, calling attention to
both the roots and the sprouts.

When the seeds have produced an observable sprout, the
children might draw an updated picture and/or tape a de-
scription of the plant. Comparisons should be noted between
the earlier picture/description and the most recent depiction.
The children should be encouraged to review their predic-
tions made during the brainstorming session and compare
them with the actual outcome. One suggestion for a culmina-
tion to this activity would be to eat the sprouts as part of a
salad or sandwich.

. Content: Pets in the Classroom-- Many early childhood

classrooms contain small pets such as gerbils, mice, rats,
hamsters, guinea pigs, birds, fish, or other easily-housed
animals. These pets are usually displayed on a daily basis in
an area accessible to the children.

. Problem: Quite often, the teacher neglects to facilitate the

environment to enhance observational skills of pets in the
classroom. Frequently, the teacher assumes the responsibil-
ity for the care and feeding of the pets and neglects to plan
for observation and discussion of the animals by the chil-
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III. A.

dren. Consequently, the children do not become involved
with the pets, and may view their presence in the classroom
as no different than any other classroom equipment.

. Modifications: The teacher can plan for the children to be in-

volved in the daily ~~re of the pet by designating this a “daily
helper” task. Rebus picture directions for the necessary care
may be displayed next to the pet so that non-read. s can per-
form this task independently. The teacher can plan for daily
observation of the pets, directing the children’s attention to
changes, growth, feeding habits, odors, skin texture, gen-
eral activity or movement, or the lack of activity. All of these
items are observable characteristics upon which inferences
can be made. The children should be encouraged to verbalize
their observations, thus becoming acquainted with new vo-
cabulary.

The cnildren should also be encouraged to question their
findings, hypothesize about what they have seen, and test
and re-test their hypotheses, in their own neophyte manner.
The teacher may want to follow up the children’s observa-
tions by graphing or charting what the children have verbal-
ized. It is important that the teacher encourage children to use
observable data to support incorrect as well as correct state-
ments.

Content: One-to-One Correspondence--Setting the table,
passing out treats, playing musical chairs, matching games,
and teacher management procedures are some of the many
places one-to-one correspondence occurs in the early child-
hood learning situation.

. Problem: Overlooked opportunities for building concepts

and comparative language are the source of the problem in
dealing with one-to-one correspondence. When a teacher
says, “Joan will you pass out the cookies so that each child
has one?”, “Here are the napkins, put one at each place,”,
“There is only room for five people at the block center-- who
wants to go? O.K.-- one, two, three, four, five-- you five
£0.”, then proceeds with the activity, an opportunity for de-
veloping same number, greater than, more, less than, fewer
concepts and language is missed.




C. Modifications: When doing these types of activities, the
teacher should take care to provide situations where the exact
amount of an item needed is not present, i.e., too few nap-
kins, too many cookies. By having extra or insufficient
amounts, the teacher provides the situations where “more
than” and “less than” conclusions can be made by the child
through observation of the activity’s outcome. The teacher
can then provide the language to talk about what was ob-
served.

In distributing treats the following language reinforcement
should occur: “Are there enough cookies? Do we have
enough cookies for each child?”

In management situations, the teacher could have a set of
five clothespins and ask each child who works in the block
area to wear a clothespin. As children leave the center they
should place their clothespins in a specified location so that
other children, seeing a free clothespin, can go to the block
center. The teacher interacting with children who want to
play with the blocks can ask, “Are there more clothespins
than children playing blocks? All those who want to play
with the blocks raise your hand. Are there more hands than
clothespins? Which group has less-- clothespins or blocks?”

In this way, instead of counting out children to go to the
center, the teacher matches children to clothespins.
Beginning prediction and estimation skills can also be devel- |
oped by asking before matching, “Do you think we have |
more (cookies) or (children)?” or “Which group is smaller?”

ACTIVITIES THAT CORRECT ERRONEOUS
INFORMATION

|
\
|
i
I. A. Content. Water Play-- Many early childhood classrooms |
contain some apparatus to allow for playing in the water.

|

The equipment may vary in complexity from a sink or dish-
pan to specially designed water tables.

B. Problem: We might preface by saying that water play, in and
of itself, with or without accessories, has therapeutic bene-
fits for the child. However, it is also a versatile medium for
presenting both science and mathematical concepts. If we

'
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look at the mathematics and science concepts to be gleaned
during water play, the problem with commonly used water
activities seems to lie in the choice of accessories to accom-
pany the water table. When all of the tall containers hold
more water than the low, flat containers, then it is possible
for the child to draw erroneous conclusions concerning con-
servation of volume. Therefore, the facilitators are at fault if
their choice of materials leads children to false conclusions
without feedback to assist them in correcting their errors.

One water-related science activity traditionally done in early
childhood classrooms is a sink/float experiment. The child is
asked to explore a set of objects and determine the buoyancy
of each. The facilitator may choose large, dense objects
which sink, and smaller, less dense objects which float,
pairing up characteristics that do not necessarily have any
relationship. Again, this may lead the child to draw false
conclusions regarding the characteristics of sinkable items.

. Modifications: The primary modification would be to care-
fully select accessories and materials that would offer appro-
priate feedback by which the child can create accurate
knowledge. Using tall containers, and wide, flat containers
which hold equal quantities of water, or a variety of different
shaped containers which have equal capacity, would facili-
tate exposure to the concept of conservation of volume. The
child’s experimentation with these materials, paired with the
teacher’s appropriate questioning, changes a random water
play activity into one focusing upon mathematical concepts.
The use of an assortment of materials, suggested above, sets
up an experience in discrepant events, forcing the child to
adapt to these discrepancies.

In the sink/float experiment, the choice of objects is equally
important. The placement of large, lightweight materials
(e.g., large pieces of balsa wood) and small, dense materials
(e.g., lead sinkers) next to a tub of water would encourage
the child to test and observe buoyancy. The teacher might
then assist the child in verbally drawing conclusions about
the discrepancies they have observed. An extension of this
activity for children who are able to approximate the con-
cepts presented would be to use a quantity of clay, shaping
and reshaping it while testing for buoyancy.
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II. A. Content: Classification of Fruits and Vegetables--Fruits and
vegetables are often the first food group classification intro-
duced to the early childhood learner because of the child’s
familiarity with these foods in his/her diet.

B. Problem: The classification of foods into categories seems to
be the primary focus of these early childhood activities. The
children are often encouraged to categorize these food ob-
jects according to erroneous characteristics. For example,
classification of objects as fruits solely on the basis of being
sweet or because they are desserts is an incorrect classifica-
tion. Categorizing vegetables as “what we eat with our meat
at supper” is also incorrect. Neither of these examples takes
into account the exceptions such as tomatoes in our salad -
(fruit) or sweet potato pie (tuberous vegetable). It is our
contention that these errors are made universally, not just by
early childhood educators. Furthermore, if it is our intention
to be scientifically accurate, the category of vegetables is not
a bona fide botanical classification. Rather, it is a general de-
scription of herbaceous, food-producing organisms. Fruits,
nuts, seeds, flowers, stems, roots, and tubers are all types
of vegetables.

C. Modifications: As a preface to all modifications for activities
which offer erroneous information, we would like to em-
phasize that it is the responsibility of educators at all levels to
be sure of the legitimacy of their content. Just by the nature
of the school setting, there is an aura of efficacy about the in-
formation presented.

The teacher should first become familiar with botanical or
scientific criteria used to classify these foods. For the most
part, these criteria are somewhat obtuse for the preopera-
tional learner. As a result, it may be inappropriate for the
teacher to expect the child to adopt these criteria as the
touchstone for categorization. The teacher, then, needs to
choose concrete criteria for classifying foods. For instance,
grouping by taste (sweet/sour) or grouping objects that have
many seeds rather than just one seed would be within the
cognitive capabilities of the early childhood learner. The
teacher should encourage children to focus upon the proper-
ties of the real object (not inferences) such as size, shape,
color, and texture. Emphasizing the development of new vo-
cabulary in formulating accurate descriptions is a necessary
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part of this activity. As a result of a series of observations, it
would be possible to lead the children into making predic-
tions about unfamiliar objects based on their past observa-
tions. One very positive by-product of this modification
could be willingness of children to taste unfamiliar foods,
relying on their predictive skills. The emphasis in classifica-
tion activities should be placed on observable characteristics.

NOTE: These same modifications apply to the errors made in
geometric classifications where squares are classified as a
separate group from rectangles rather than as a subgroup of
rectangles (all squares are rectangles).

Content: Cardinal/Ordinal Numbers--Storybooks, labels on
cabinets, chairs, naming of groups, and sequencing of ac-
tivities are examples of the early childhood learner’s contact
with numbers.

There are three common ways numbers are used. First, as
cardinal numbers--those that tell how many or quantity; i.e.,.
there are 5 birds on the fence. Second, as ordinal numbers--
those that tell the position of an element in a designated se-
quence, i.e. I live in the second house from the corner. And
third, as nominals--those that merely name, i.e. my room is
24, '

. Problem: In the presentation of numbers to children, the

cardinals, ordinals and nominals are often used in incorrect
or confusing manners, thus creating confusion as to what the
numbers actually mean. Many children when asked to count
a group of five apples will count them by matching a number
name to an object in the set and report that “there are five
apples.” However, when asked to show the five apples, they
point to the fifth apple, thus pairing the number word with
the apple in an ordinal sense rather than as a cardinal number
which represents the entire group of apples. This problem is
often compounded by storybooks. One such book is
Sendak’s Seven Little Monsters (1977). In this book he
gives each monster a name that is a cardinal number and
refers to the monster using this number, i.e. “Six sleeps late
but not in bed.” Meeks makes a similar error in One is the
Engine (1956) by pairing “Three is a flat car” with a picture
of a car with a “3” on the side. He further confuses the con-
cept of cardinality by showing at the bottom of the page an
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entire train with the cars discussed to this point (1 is the
engine, 2 is the box car) shaded in blue. One would expect
to see three cars shaded. Four cars are actually shaded, the
engine is represented by a two car unit (1956).

Further confusion arises when numbers are nsed as nomi-
nals. “The paper is in cabinet four.”

C. Modifications: The teacher should always be careful when
using ordinals to show position to use the terms, first, sec-
ond, third, . .. and never the numerals 7, 2, 3,. ..

When discussing four, five, six, as numbers that show
quantity, the entire set or group should be emphasized.
Activities which match cardinal numbers one-to-on¢ with a
set of objects in order to find the quantity of the set reinforce
the misconception that the object matched with the numeral 4
is seen as representing the number four rather than being part
of the set of four. An illustration that encompasses all of the
four objects with a border would reinforce the concept of
cardinality.

When using number books, two courses of action are pos-
sible. The first would be to eliminate all books and situations
that use the numbers incorrectly such as Seven Little
Monsters (1977) or One is the Engine (1956), and only use
books such as Sazer’s What Do You Think I Saw? (1976) or
Kulas’ Puppy’s 1-2-3 Book (1978) where the numbers refer
to sets, i.e. “There were three jungle mice eating brown
rice,” and “Puppy sniffs 'round the barn door. Inside are
four ducklings.” (Kulas, p 4). The second approach is to
revise the books so that cardinals are used appropriately:
“The sixth monster sleeps late but not in bed,” and “the third
car is a flat car.”

Nominal numbers should probably be eliminated in the
classroom situation. Their explanation may serve only to
further confuse the issue.

Long Range Implications
Although scientists and science educators do not always agree

on what science is, they do agree on what scientists do. These
methods of investigation are referred to as the science processes and
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are divided into the basic processes and the integrated processes.
Since the preoperational learner is not developmentally ready to
grasp many of the abstract concepts of the science content, the em-
phasis should be on the basic science process skills. These skills
include observation, communication, inference, measurement, clas-
sification and prediction and are appropriate for the preoperational
learner (Funk et al., 1979).

The proposed modifications in the previously cited activities
should have many long range effects, the most immediate effect be-
ing the student’s ability to find errors and to approach new problems
or situations using the basic science process skills as emphasized in
these activities.

Upon close examination of these activities, it is to be noted that
the process of observation is incorporated within each. In the early
childhood years most of the observations will be qualitative in nature
(using one of the five senses), but as the students move up to the
elementary grades they will be able to make many quantitative ob-
servations (making reference to some standard unit of measure). The
students are asked to verbalize a description or draw a diagram of
their observations. This is the first step in collecting data and com-
municating these observations to others, Communicating observa-
tions is basic to everything else in science and may be helpful in
promoting good communication skills for the learner when dealing
with many types of information. This repetition in using the same
process skills in the activities described should help reinforce their
use by the learner. In some instances, such as in the activity Pets in
the Classroom, the children will be able to make some simple infer-
ences and predictions from the data they have collected.

In the fruits and vegetables classification activity, the learner
begins to realize through observation that similarities and differences
exist among objects and that these characteristics may be used for
classification. This grouping should in turn lead to the ability to im-
pose some type of order to the many varieties of objects encountered
in the world. Again, observation is emphasized by classifying the
objects using observable characteristics. This type of classification
encourages the learner to realize that some objects may be subsets of
other objects.

Although early preoperational learners may not be able to make
accurate measurements, they will be capable of making some crude
measurements. This is demonstrated in the “Water Play” activity.
With the modifications suggested in this activity, the learner will
begin to realize that only with some form of measurement can vol-
ume (amount of space within) of the conrainers be determined.




The long-range implications for mathematics may not be as ob-
vious as one may think. Most children do eventually sort out the dif-
ferences in cardinal, ordinal and nominal numbers, and use correct
comparison words. Along the way, they have accumulated many
mathematical behaviors that are built on erroneous or incomplete
foundations. Many adults have problems with the inclusion idea that
is found in “all squares are rectangles but not all rectangles are
squares.”

Later, when teachers attempt to correct erroneous information,
the learner fails to perceive the logic and consistency of mathematical
system. Rather, mathematics seems as a variable, illogical and
capricious. Without the understanding of the content, many people
learn mathematics in a rote manner, where the reason for a proce-
dure is the authority of the instructor--not the logic of the content
structure. Research has indicated that this type of perception can lead
to mental blocks against learning mathematics, anxieties, and avoid-
ance behaviors which often limit career and life-style choices.

These are only a few of the science and mathematics processes
hidden within the early childhood curriculum and the long range ef-
fects of emphasizing or uncovering them from the learners.

Summary

Conceptual learning can be enhanced in mathematics and science
at the early childhood level. It is important that the teacher carefully
structure the activities to use materials and language enforcement to
focus on concepts and that the teacher provide a classroom environ-
ment which encourages the children to create knowledge, recognize
errors, and learn from mistakes.

Our position has been that the early childhood learners are most
likely to be in a stage of cognitive development that Piaget refers to
as “preoperational.” These chiidren need to learn by making mis-
takes, seeing the consequences of these mistakes, and revising their
views and theories of the world to include the new information
gleaned from mistakes. In order to facilitate this learning process,
the teacher needs to provide an interactive environment for children
and help them focus on what they see and do. This environment
must be constructed with care so that authoritarian, erroneous views
and theories are not formed through inadequate feedback. The
teacher should help focus, not dictate the learner’s attempt to give
structure to what is observed.

This view suggests that what is formally presented to the learn-
ers must be within the realm of their ability to understand, and not
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just for the exhibition of a non-meaningful behavior. Teaching at
this level should aim at the exposure to content, not to its mastery.
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Because of the universality of quantitative rela-
tionships, the habit of functional thinking is of
utmost importance to the individual. Its
acquisition should be the emphasized goal of
every course dealing directly or indirectly with
relations between things or processes.

J. S. Georges, 1926

V. Unifying Themes in
Science and
Mathematics

Not only does algebra increase our happiness by
unfolding before us a larger meaning to nature
than could otherwise be found, but the study of
algebra leads directly to the con:rol of nature and
the pleasures that come from the possession of
these powers. In brief, algebra may be
considered as a inedium for the interpretation and
control of nature.

M. T. Goodrich, 1935

Thus I say that Geometry, the first and noblest of
sciences, has played in the past and will probably
continue to play the dominant role in science. It
certainly dictates the form and to some extent the
content of all scientific concepts. It is the stage
upon which those abstract actors, the causes and
effects, play their scientific roles. It is the picture
frame wherein that greatest of all artists, the
creative scientist, paints his pictures.

F. W. Bubb, 1937
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Functional Relations and
Mathematical Training!

J. S. Georges
University High School, Chicago
(Vol. XXVI No.7 October, 1926)

1
It is not things themselves,” says Henri Poincare, “that science
can reach, as the naive dogmatists think, but only the relations of
things.” The outstanding problems of modern science in things
quantitative are indeed problems of mutual dependence and relation-
ships. In his groping after the truth the scientist begins with mea-
surement, when measurement is possible, then with the compilation
of data, and finally the study of the relationship between the associ-
ated quantities. Thus the study and investigation of the quantitative
relationships form the underlying principle of understanding the
laws of nature. They enable man to know the material world in
which he lives. They enter into every phase of the life of every
thinking man. In fact, life is made up of relationships: relationships
which unite the individual in a definite manner to the society, or the
group of individuals, of which he is a part; to the inorganic world
and the processes of nature upon which he depends for subsistence;
and to the other organisms with whom he inhabits the earth.
Furthermore, the whole process of thinking is based upon, and
in terms of, certain acquired relationships which form the back-
ground or the apperceptive mass of the individual. His ability to in-
vestigate, interpret, and comprehend, or even appreciate new rela-
tionships, depends in a large extent on the knowledge of quantitative
relationships already in his possession. These constitute his mental

IRead at the Educational Conference of the Academies and High Schools in
cooperation with the University of Chicago, May 8, 1926.
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capacity. Now the true purpose of general education is to endow the
individual with methods of thinking. These methods of thinking
are acquired only after passing through a long series of experiences,
and after undergoing a long period of training. Similarly, the habit
of relationship or functional thinking is acquired only through a long
and slow process of experiencing with simple relations, and with
specific instances, each instance shedding some light on the exact
nature of the more general relationship.

Because of the universality of quantitative relationships, the
habit of functional thinking is of utmost importance to the individ-
ual. Its acquisition should be the emphasized goal of every course
dealing directly or indirectly with relations between things or pro-
cesses. In its preliminary report on “the Reorganization of the First
Courses in Secondary School Mathematics,” the National
Committee on Mathematical Requirements specified that “the pri-
mary purpose of the teaching of mathematics should be to develop
those powers of understanding and analyzing relations of quantity
and of space which are necessary to a better appreciation of the
progress of civilization and a better understanding of life and of the
universe about us, and to develop those habits of thinking which
will make these powers effective in the life of the individual.” Thus
in the realization of the value of the formation of the functional
thinking habit and its inculcation in the individual lies the true pur-
pose or usefulness of mathematics. But as Professor Hedrick?
points out, the danger lies in the fact that those who have acquired
the habit may underestimate the value of training in its formation,
and overlook to emphasize the essential significance of relations, be-
cause they seem to be obvious and self-explanatory. How often, in
working with algebraic processes, the pupil is left alone to see the
“obvious” relations, and as should be expected, the obvious is too
obvious for his untrained mind to see. It will be pointed out later on
in this paper that generally the text books in the secondary school
mathematics fail to emphasize or bring out the significance of the
relationships involved between the quantities with which they deal.
“Our courses of study have failed, generally, to the present time, to
give our high school pupils a grasp of functionality. Thus both the
basic mathematical purpose of the course and the foundational
thinking purpose have not been fulfilled.”

Among the multitude of ideas and endless variety of concepts
that constitute any course of study, there are a few which form its
general framework. These fundamental concepts with their great or-

2Mathematics Teacher, April, 1922.
3Rugg-Clark, Fundamentals of High School Mathematics, p. VIIL.
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ganizing powers form what Professor Morrison calls the true learn-
ing products or units of the course. They are to the course what the
spinal column is to a vertebrate animal, giving the whole structure its
character, its stability, and its coherence. They are the unifying
principles about which, as nuclei, the important materials of the
course are grouped. The cellular organism in biology and the elec-
tron theory in physics are examples of such supreme and important
concepts. In mathematics the one great idea which is sufficient in its
scope to form the basis of unification is the function concept, “a
concept which since the seventeenth century has dominated ad-
vanced mathematics, a concept which in the twentieth century, ac-
cording to the auspices, will play a fundamental role in the reorgani-
zation of elementary mathematics.”* Because of the inter-relations of
the equation, the formula, the graph, and the geometric relations in-
ductively acquired, the function concept, as Professor Felix Klein
pointed out in a paper read before the International Congress of
Mathematicians which met in Chicago in 1893, should be the unify-
ing principle around which mathematical material should be orga-
nized and correlated.

“Functional relations will occur on every page of every book of
mathematics, unless we suppress them,” says Professor Hedrick,
whose statement, because of his special investigation of and interest
in the reorganization of secondary school mathematics, may be ac-
cepted as authentic. And the significance of this statement becomes
at once evident if we realize that the science of mathematics is pri-
marily engaged in the study of quantitative relationships, both the
spatial and numerical, which constitute its direct field of study, and
those which are investigated and recorded by other sciences.
Perhaps it is for this reason that the mathematician has claimed this
fundamental and universal notion as his very own, even though its
application is of utmost importance in all fields of thinking.

In its mathematical setting the term function has gone through a
long process of modifications of meaning, from its original meaning
as any power of a number to its present true meaning as the notion
of relationships between quantities and the manner in which changes
in one of the two or more related quantities produces a change in the
others. The relationship is represented in terms of dependence of
one variable upon another in such a way that, when one variable, the
independent, is assigned any value from a set of values, called the
range of the variable, the corresponding value or values of the other,
the dependent variable, may be determined. The variable, such as x,
in terms of which the function is defined, is simply a mathematical

4E. H. Moore, The School Review, May, 1906.
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symbol denoting in any given discussion any one of a set of objects.
In elementary mathematics this set of objects which constitutes the
range of the variable consists of numerical facts. Thus any mathe-
matical expression involving one or more variables embodies the
functional relationship.

Perhaps no notion is as common and familiar to all as the depen-
dence of one variable quantity upon another. The notion of mutual
dependence and reciprocal evaluation is exemplified in every tumn
and feature of life and the world. For instance, the perimeter of a
square depends upon the length of one side; the area of a circle upon
the square of its radius; the distance traveled upon the rate and time
of going; the time of vibration of a pendulum upon its length; the
volume of a gas upon temperature and pressure; the cost of a rail-
road ticket upon the number of miles travelled; the parcel post rate
upon the weight of the parcel and the distance it is sent; the amount
of work a man does upon the number of hours he works; the cost of
a suit of clothes upon the supply of cloth, labor, and style; the rent
one pays upon the size of the house, improvements, location, and
the conscience of the owner; the size of the crops upon the acreage,
heat, moisture, fertility of the soil, and the industry of the farmer;
the rate at which potatoes cook upon the amount of gas burned un-
der the cooker; the sweetness of a thing upon the amount of sugar in
it; the amount of light coming through a window upon the size of the
window; the prosperity of a throat specialist upon the moisture of
the climate; the rate of chemical change upon the amount or the mass
of the substance involved; the interest on a sum of money upon the
rate and time; and so on without end.

The notion of dependence forms the basic study of all physical
sciences. As soon as a science reaches the stage, in its groping after
the truth, where measurement is possible, the observed data are set
down and studied as special instances of some general law which it
seeks to discover. Whenever possible the mathematical method of
representing dependence and showing relationships are utilized to
advantage. This is especially true in physics. Every law of physics
may be expressed as an equation. Hence the necessity of coopera-
tion between physics and algebra. It is here that we find an indis-
pensable need for the grasp of the principle of functionality as ex-
pressed in algebraic shorthand.

“An equation is the most serious and important thing in mathe-
matics,” says Sir Oliver Lodge>: The concept is perhaps the oldest in
mathematics, for when the rational mind of man began to count, he
used the idea of equality of the things counted. The elementary alge-

5Easy Mathematics, 1906, p. 127.
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braic equations and their solutions have been studied with various
degrees of success by the ancients. The Ahmes papyrus is the oldest
deciphered work treating the solution of equations in one unknown.
The unknown quantity is called hau or heap$: Thus, “heap, its 1/7,
its whole, it makes 19™: i.e.

x/7 + x = 19. On fragments of papyri which have been deciphered
more recently, but are probably older than the work of Ahmes,
statements equivalent to the system of two simultaneous equations

2432 = 1000, y=3x

have been found.” The Greek mathematicians, as well as the Hindu,
Arabian, and the European mathematicians of the Middle Ages,
sought numerical solutions of particular quadratic and cubic equa-
tions.

The algebraic equation interpreted rightly is a convenient method
of representing the functional relationship. For example, the equa-
tion y = 2x+3 determines a unique value for y corresponding to ev-
ery value of x, the relation of dependence being stated in the poly-
nomial in the right member. Furthermore the concept is not only
obvious in the equation involving two variables, but is also inherent
in the equation with only one variable, such as 2x+4 = 10. For in
the latter case, as Professor Young explains8, the problem is to find
how the expression 2x+4 varies as X varies. Among the different
values of 2x+4, that of 10 can be found, and it is but one of the
many values. When the curve of the equation is drawn, the variation
is at once recognized.

Mathematics had its origin in trying to solve practical problems,
and mathematical knowledge has grown because it has been useful.
In view of the usefulness of equations in expressing physical rela-
tions compactly, the emphasis should be placed on interpreting the
relations and not on the manipulation of the symbolism. There
seems to be a perverted attitude on the part of the text book writers
and the teachers of mathematics in neglecting the numerical relation-
ships and in making the manipulation of the equation their primary
objective. The pupil is taught how to solve a given equation, and he
acquires a great deal of skill in his performance, but he has no idea
what the equation stands for. He solves the equation for the value of

6Cajon’, A History of Mathematics, p.13.
TMonographs on Modern Mathematics, p. 213.
8Teaching of Mathematics, p. 387.
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x, and when that is done he is through, even though the equation
may be a representation of relationship between two or three associ-
ated quantities, expressed in terms of a single variable x. And when
he comes to verbal problems, he is told to study the relations be-
tween the parts of the problem and express them in algebraic form,
and then solve the equation. But he sees no relations, for his atten-
tion has not been called to any relations in an equation. Give him the
equation, he will solve it; but to set up the equation, that is another
story.

An analysis, by the writer, of the text books of elementary alge-
bra, and of the general mathematics for the junior high schools, in
connection with this problem, has shown that the equation is invari-
ably defined as a statement of equality between two numbers, and to
emphasize the equality, the equation is thought of as a balance. What
is done to one side must be done to the other side, if the balance is to
be preserved. It is true that this statement inherently means, “a
change produced in one member of the equation necessitates a corre-
sponding change in the other;” but this latter meaning should be
made clear because it brings out the idea of dependence and relation-
ship. Now a formula, because of its nature, would be expected to
state explicitly the relationship between the quantities which it sym-
bolically represents. But a formula is commonly defined as “an ab-
breviated rule.” Where is the relationship? The pupil is expected to
get it from the nature of the problem. He does not. He tries to re-
member the rule. There is no relation specified, and if his attention is
not called to it, he does not see it. Many writers will warn the pupil
that a formula is always an equation, but an equation is not always a
formula. If defined on the basis of relationship and dependence of
quantities there may be some justification for this attitude, since the
relations expressed in most equations are artificial and not real and
practical as those expressed by the formula. But they do not always
define an equation in terms of any relationship. Then, why try to
confuse the mind of the child? Since his attention is not called to any
relations involved, and he cannot be expected to distinguish between
an equation and a formula on the basis of any relationship, how is
he to know when an equation is a formula and when it is not a for-
mula? Is it a wonder, then, that he can solve equations involving x,

» 2, a, b, ¢, but gets stuck on those having m, d, v, ¢, f, a? If an
equation is defined and interpreted correctly, this apparent confusion
disappears. Many writers? use the two terms synonymously, and
they define an equation correctly as a method of representing rela-

9For example see Breslich, Junior Mathematics, Book I.




tions between numerical facts. X=4y and p=4s both show that the
perimeter of the square is directly proportional to the side.

When, in connection with the solution and the application of the
equation, the idea of the functional relation which it represents is
duly emphasized and illustrated with numerous concrete examples,
algebra will become a homogeneous subject grouped about the
equation as the central notion and will not consist, as at present, as
Professor ™liss expresses it!0 of “topics, related perhaps inherently,
but with no indicated relationship, following each other in a confu-
sion of radicals, exponents, progressions, imaginaries, probabili-
ties, and other algebraic conceptions, in a way which must tend to
develop a very disjointed understanding on the part of the beginner.”
Some text books of general and unified mathematics in the sec-
ondary schools, especially in the junior high school mathematics,
have intrcduced the algebraic materials as a homogeneous unit cen-
tered about the equation. The closer the connection between the
equation and the function concept, the more uniform and coherent is
the unit.

The concept of relationship can be acquired by the pupil in pro-
portion as the teacher calls his attention to it in every case where re-
lation exists between the quantities with which he works. But it can-
not be taught or learned if the teacher fails to interpret the equation as
representing relations, and waits until nearly the end of the course
when he devotes a few days to variation and proportion. Fur-
thermore, the pupil’s acquaintance with function should not consist
of drawing a few perfunctory functional graphs. The acquisition of
the concept must start from the very beginning, when the pupil is
introduced to the simple linear equation in one variable, and continue
as long as he works with algebraic expressions; with special em-
phasis and amplification on dependence and variation as expressed
by proportion; substitution, which means the calculation of one
quantity in terms of another; tabulation, which, actually states in full
the value of one quantity in terms of another; and graphic represen-
tation of related facts.

The functional relation is often more explicitly stated in formulas
expressing physical or geometrical laws. For the most part a clear
understanding of these laws is reached through the study of special
instances of the variation between the variables, in the form of equal
ratios of the measured magnitudes. The ratios determined, the law is
stated by indicating how one quantity varies with the other, directly
or inversely. Proportion is thus conceived of as a special instance of
variation and of the functional relationship of the form y=kx. The

1OMonographs on Modern Mathematics, p. 264.
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dependence or variation may be direct, that is, both variables in-
crease or decrease in value together, as is the case when the expres-
sion has the form y=kx; or one quantity may vary inversely as the
other, that is, one variable increases in value while the other de-
creases, which case has the form xy=k. The two special instances of
the former case give rise to the proportion

yi_y
X X2

while those of the latter case give the proportion

yi_y
X2 Xj

Thus many problems in physics, chemistry, general science,
domestic science, astronomy, as well as in mathematics, may be
solved by either variation or proportion. And since the whole theory
of proportion is involved in variation, this fact should be made ob-
vious to the pupil. He should clearly recognize the relation between
variation and proportion. Proportion should mean more to him than
“the product of the means equals the product of the extremes.” An
understanding of the true nature of proportion will enable him to in-
terpret and appreciate the various possibilities which occur in the re-
lations expressed by proportion. The untrained mind cannot think of
such relations readily, as shown by Sir Oliver Lodge in his book,
Easy Mathematics, Principally Arithmetic. He points out that most
persons will attempt to use proportion in cases to which it is not
adapted, and when the relations are impossible and ridiculous, as in
the following: “If a camel can go without water for ten days after
drinking fifteen gallons, how long could he go if he drank one hun-
dred gallons?” “If a boy can slide eighteen feet on the ice with a
running start of twenty feet, how far could he slide after running
half a mile?”

As intimated above, the study of functional relations and func-
tional thinking are useful even in branches of thought where precise
mathematical formulation is impossible. In this case the observed
facts are tabulated and the data may be studied to interpret the rela-
tions between the quantities they represent. Tabulation and interpre-
tation of tabular relations is of significant importance, not only for
its own direct and practical application, but also because of its direct
bearing on formulation, when formulation is possible, and graphic
representation. A table is strictly functional in character. It states the
value of one of two related quantities when the other is given. For
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example, consider the accompanying table, in which the numbers in
the first row represent hours of the day, and the numbers in the sec-
ond, the corresponding temperatures.

Hours 81 9|10) 11112} 1 2| 3| 4| 5| 6| 7t 8

Temperatures 62(63|67|75|80|82|83|81|79|73|74|67}59

The table sets up a definite correspondence betwzen the numbers
representing hours and the numbers representing temperature, such
that whenever a certain hour is selected a corresponding temperature
is uniquely determined. It should be noted that the functional relation
here is not expressible as an algebraic equation.

Tables of statistics furnish useful information, collected through
a great number of observations, about the weather, the growth of
population, crop productions and prices, the cost of living, the death
rate, etc. The facts found in most statistical tables are not expressible
in exact mathematical laws, or formulas, though such a formula
would be of immense value. Such, for example, if a formula could
be deduced by means of which the rainfall or the temperature for any
specified time could be computed in advance. Nevertheless, the
study of statistical tables warrants fairly safe and useful conclusions.

The functional character of the tabular representation should be
emphasized, because the ability acquired by the pupil is an essential
tool which may be used to advantage in other courses and in life,
and also because of its importance in connection with the graphical
representation of relationships.

The graphical representation of numerical facts and relationships
by means of geometric Jine segments and curves is of utmost impor-
tance in mathematics, and at the same time is very interesting to the
child. The notion is not altogether new to him for he has become
familiar with it in the newspapers and magazines. The principles un-
derlying this representation are easily understood and are tacitly as-
sumed without much difficulty. As a method of representing statisti-
cal facts the graphic method has many advantages over the tabular
method: in comparison of different tables of facts, in bringing out
more clearly the meaning of the numerical facts and the relation be-
tween them at a glance, in showing the maxima and minima, the
range of change, etc. Furthermore, as in the case of the continuous
graph, this method furnishes additional facts not stated in the table.
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A common method of representing statistical data is by means of
the bar graph. This is supplementary to the tabular. The facts in the
accompanying table are interpreted more readily by means of the di-
agram using line segments for numerical facts.

Months Jan, | Feb. | Mar.| Apr. | May | Jun | July | Aug. | Sept.| Oct. | Nov. | Dec.

Average daily| 62 | 63 67 | 75 80 | 82 83 81 9| 73 74 67
hours

The table states the number of electric light units used in the average
residence in a certain city for each month of the year. To represent
these facts graphically, squared (centimeter) paper is used. A hori-
zontal line is used for the base line on which the months of the year
are marked off; the number of corresponding hours are represented
by means of vertical line segments. The selection of the unit for the
length of the line segments, the distance between two successive
bars, and their width are optional and depend on the nature of the
numerical facts in the table. It should be noted that this type of work
is really interesting to the pupil and develops initiative and indepen-
dent thinking, for example in the selectior of the baseline, the unit,
etc.

Aflter the pupil has learned to make and read the bar graph, he is
naturally led to the next step in the graphic representation, namely,
the continuous line graph, by joining the end points of the bars. The
bars are then entirely omitted, leaving only the end points. The line
graph is used to represent related facts, and it not only illustrates
given facts and enab.ss comparison, but also provides additional in-
formation not contained in the table. It also paves the way for the
representation of algebraic expressions by means of the geometric
lines and curves, for he becomes familiar with the relation between
points and pairs of values which is the underlying principle of the
method of analytic geometry. The continuous line graph is best used
for representing changing prices of a commodity, temperature, stock
fluctuations, etc.

The graph is a powerful instrument in representing relationships
admitting mathematical expressions both in their interpretations and
their solutions. It is here that we see a ‘rue fusion of the geometric
and the algebraic methods. Though the properties of the simple ge-
ometric curves have been known from the earliest times, little use
was made of them in interpreting algebraic expressions. In fact these
two branches of mathematics were studied separately following two
parallel lines of development, and they were jealously kept separated




untl in the seventeenth century the great philosopher and mathe-
matician Descartes prepared the way for the union of the algebraic
function concept with the geometric curve notion. The method con-
sists of putting the points in the plane into a one-to-one correspon-
dence with the pairs of real numbers. The position of any point may
be uniquely determined by its distances from two fixed lines called
the coordinate axes. The geometric curve is then thought of as gen-
erated by a moving point and its study reduces to the study of the
variation of the coordinates of the points. This variation of the co-
ordinates for most curves may be represented in an algebraic form,
that is the ordinate y is expressed in terms of the abscissa x by
means of a formula or equation. The graph becomes the picture of
the algebraic formula y=f{x), and the functional relation expressed
by the equation is made obvious by the graph.

In the secondary school mathematics the formulas and equations
studied are for the most part linear and quadratic functions; conse-
quently the straight line and the parabolic graphs are of special inter-
est. In the case of the linear equations, the straight line graph always
intersects the x-axis in one and only one point, except in the special
case when the graph is parallel to the x-axis, and the point of inter-
section gives the real solution of the equation. The graph of the
quadratic equations, on the other hand, intersects the x-axis in two,
one, or no points, giving two real distinct, two real equal, or two
imaginary roots of the quadratic equation. We thus see that in con-
nection with the representation of dependence the graph may also be
used in solving equations.

Thus, interpreted correctly the real work of algebra consists of
the study of relationships between numerica! facts. The real crite-
rion, then, should not be the number of symbols it contains, but
whether there is any question of variation and dependence involved.
The emphasis should not be placed on the symbols or their manipu-
lation, for symbols are only the shorthand for representation of rela-
tions. The shorthand is essential but it is not algebra. Algebra has
been and may be studied without the shorthand. To spend all the
time on the shorthand, without any realization of the relationships
for which the shorthand is to be the handmaid, is “to spread a feast
without any guests.”

Turning to geometry we find the relations involved are those
existing between geometric or spatial quantities, as distinguished
from the algebraic relationships between numerical quantities. The
points, lines, planes, and solids which constitute the material of ge-
ometric study are related in certain definite ways. The relations exist-
ing between the parts of a triangle have been completely developed
and their functional character recognized by the terminology applied

ja7
155




to them, namely, trigonometric functions. The parts of all geometric
figures are inter-related. Certain definite relations exist between the
angles and the sides of polygons. For example, in the triangle, the
fundamental relation x °+y°+2z°=180°, existing between the three inte-
rior angles, gives rise to the variations: x=180-y-z, y=180-z-x, and
z=180-x-y. Besides the trigonometric ratos, there is the relation
between the squares of the side opposite an acute, right, or obtuse
angle, and of the other two sides. If the functional character of this
relation is recognized, it would not be divided into three separate and
unrelated theorems. Functional thinking in geometry necessitates
reasoning by the Principle of Continuity to discover the general rela-
tion, and applying it to the special cases. For example, the four sep-
arate theorems concerning the measurement of the angle included
between two intersecting lines, in terms of the intercepted arcs of the
circle, become but one general theorem, each special case depending
on the location of the point of intersection of the lines with respect to
the circle. Similar conclusions apply to the relations between similar-
ity, congruence, and equivalence of plane figures.

As in algebra, so in geometry the proper emphasis is often
placed not on the quantitative relationships which constitute the real
geometry but on the formal logic which is an instrument used in the
study of those relationships and in discovering other relationships
from the existing ones. Our traditional courses in geometry have be-
come so absorbed in the formal logic in the proofs of the theorems,
that the functional relation is neglected and often not recognized.
Studied this way geometry fails to be of practical value in the inter-
pretation of spatial relationships. It is open to question whether ge-
ometry as it is taught at the present time enables the pupil to see, for
example, the changes produced in the shape of a parallelogram with
the change of the angles while the sides remain fixed, or the change
in the sides while the area remains fixed. To study changes pro-
duced in figures by the variation of one or more of its parts 1s to
study real and practical geometry, and it is of utmost consequence
toward a real mastery of geometric notions. Ability to think such
reasonable relationships quickly and accurately should be a part of
the reasonable mental equipment f all educated men and women.

In view of the importance of functional thinking in all fields of
thought and investigation, and the important role it plays in mathe-
matics, permeating all of the branches, and being represented by dif-
ferent forms of varying degrees of applications, we are led to believe
that the practical value of mathematics to a non-mathematician lies in
the development of the functional thinking habit. It is generally felt
that mathematical training is indispensable in the study of other
sciences, and by its devotees mathematics is designated as “the lan-
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guage of all sciences.” Of course no one will deny the absolute im-
portance of the number concept and the four fundamental arithmeti-
cal operations to the individual in carrying on intelligently and eco-
nomically his duties of life. But how much of algebra, geometry,
and trigonometry he needs in his further studies and in life is another
question. Since he continues to deal with quantitative relationships
throughout life, it is to be expected that the habit of functional
thinking acquired in his courses in mathematics will abide through
its constant use, and that of the mathematical processes learned only
those which are directly associated with this habit will be retained
and utilized.

The problem of finding the exact amount of mathematical train-
ing needed in special types of study and work is indeed a difficult
one. Various investigations have been made by students of educa-
tion in this line, but most of them consist in analyzing text books,
magazines and newspapers to determine what mathematical terms
are used and the minimum vocabulary of mathematical terms needed
for a comprehensive reading of the subject matter.!! These investi-
gations, of course, throw but little light on the actual applications
and practicabilities of mathematical concepts and processes.

Of the algebraic work found in the use of mathematics in the in-
dustrial occupations, Florence Morgan!2 shows only ratio and pro-
portion used in carpentry. Of the mathematics used in shop prob-
lems, equations comprise 11.1 percent, literal equations and formu-
las 22 percent, ratio and proportion 66.9 percent. Thus it seems that
there is a predominance of formulas and proportion; the fundamental
operations used are only in connection with the manipulation of the
equation.

Mary O. McClusky!3 concludes that only a few simple exercises
of an algebraic nature, requiring an acquaintance with equations and
the use of formulas, are needed in home economics.

R. C. Scarf14 points out in his thesis, Mathematics Necessary
for Reading Popular Science, that of the algebraic processes only
formulas, bar, linear and circular graphs are used. He concludes that
“the evidence presented shows clearly that one of the important
functions of mathematics is furnishing a vocabulary for describing
spatial and quantitative relationships.” One may reasonably doubt if
the furnishing the individual with a mathematical vocabulary alone is

11See Bobo’s Thesis, The School of Education, The Univesity of Chicago.
12Thesis: The School of Education, The University of Chicago.
13Thesis: The School of Education, The University of Chicago.
14Thesis: The School of Education, The University of Chicago.
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sufficient to enable him to interpret and appreciate spatial and quanti-
tative relationships.

Similarly, the functional character of the practical mathematics is
seen in the use of mathematics in agricultural studies where, accord-
ing to H. B. Roel3, perimeter and area formulas of polygons and
circles, volume formulas, and formulas of the relationship of a right
triangle are needed mostly. Problem analysis is considered of special
significance.

An analysis, by the writer, of some typical high school physics
text books has disclosed the following concepts and processes used:
(1) formulas, (2) graphs, (3) ratio, (4) direct and 1nverse variation,
(5) proportion, (6) geometrical constructions needed in the compo-
sition of forces, velocities, and optics, (7) trigonometric functions.
With the exception of number 6, the others are the processes which
we have shown to be directly involved in the function concept. The
chemistry text books, on the other hand, use very little algebra. The
chemical formula, such as Fe;+0; = Fe,0,, is not a true algebraic
equation. Some proportion is used in connection with determination
of atomic weights. However, the ability of the pupil to interpret
variously stated real relations, and to represent them symbolically, is
of paramount importance in chemistry as well as in physics.

The outstanding finding of these and other studies confirms our
convictions in the impoitance attached to a full understanding of
functional relations and to the acquisition of the habit of functional
thinking. Herein lies the primary function of a high school course in
mathematics, and herein lies the true solution of the problem of re-
organization of secondary school mathematics. The School of
Education of the University of Chicago has been a center for educa-
tional experimentation for a number of years, and here the solution
to the problem of mathematical reorganization has been along the
lines of fusion and correlation of material. Following in Mr.
Breslich’s wake, many text books of general mathematics have re-
cently appeared which indicate a favorable and concerted effort to-
ward a recasting of the subject matter. In many of them this reorga-
nization consists merely of mixing algebraic and geometric material.
True fusion, however, should be in the form of a “chemical com-
pound,” coherent and based upon the inter-relations of concepts.
Reorganization of material is taking place even in the traditional
courses in algebra, where more practical problems are brought in
and more use is made of the formula and the graphic representation.

But, after all, the text books are but tools in the hands of the
teachers. When the teachers of mathematics themselves realize the

UmMathematics Teacher, January, 1922,
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importance of the function concept, and are willing to lay stress on it
as the primary and underlying principle of the course, and have
constantly in mind the pupil’s training in the formation of the habit
of functional thinking, they will utilize this fundamental concept in
making mathematics of direct value in the development of more in-
telligent citizenship. They will present the supreme ideas, of which
mathematics is the science, as never before in their more obvicus
aspects to be understood and utilized by the individual for his per-
sonal use, and by the society and the state for the advancement of
scientific knowledge. They will present them with such earnestness
that the science which Plato called “divine™; which Goethe called “an
organ of the inner higher sense”; which Novalis called “the life of
the gods™; and which Sylvester called “the Music of Reason” shall
be the very essence of reality, penetrating life in all its dimensions. It
is this “new mathematics” which H. G. Wells describes in his
“Mankind in the Making,” as “a sort of supplement to language, af-
fording a means of thought about form and quantity, and a means of
expression more exact, compact, and ready than ordinary language.
The great body of physical sciences, a great deal of the essential
facts of financial science, and the endless social and political prob-
lems, are only accessible and only thinkable to those who have had a
sound training in mathematical analysis.”
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Algebra as a Medium for the
Interpretation and Control of
Nature

Merton Taylor Goodrich
State Normal School, Keene, New Hampshire
(Vol. XXXV No.3 January, 1935)

Not only does it give delight to find algebraic laws in nature, but
the discovery and application of these laws make the world a happier
and better place in which to live. It is a joy to perceive that there is a
relation between speed, time, and distance which can be represented
by a simple formula. But is an even greater pleasure to find that by
means of algebraic formulas, machines can be constructed for the
production and control of motion. Not only does algebra increase
our happiness by unfolding before us a larger meaning to nature
than could otherwise be found, but the study of algebra leads di-
rectly to the control of nature and the pleasures that come from the
possession of these powers. In brief, algebra may be considered as
a medium for the interpretation and control of nature.

The world in general does not use algebra to solve puzzle prob-
lems, to remove complicated nests of parentheses, or to perform
other valueless tedious tasks. Society uses algebra to shape the
wings of the airplane, to build the headlights of an automobile, to ar-
range the parts of a radio tube. Our present civilization could not
exist without algebra. Society makes use of algebra to obtain new
meanings to the universe and to control the forces which it discov-
ers.

It is impossible to control the force of exploding gasoline with-
out the use of formulas for the construction of cylinders and valves.
It is impossible to control the force of electricity without formulas
which determine how the wires shall be wound on the generator. At
the present time, the natural and the social sciences are finding it de-
sirable to use symbols and formulas to clarify their terminology and
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to establish their laws more definitely. To an increasing extent, all
sciences are making use of simple algebra. Society is finding algebra
useful not only in the study of numbers, forms, and forces, but in
such studies of real life as are illustrated by the Mendelian law.
When a law is determined with sufficient certainty to be represented
by a formula, it becomes algebraic. But not until a law has become
algebraic can it be used effectively or accurately for the control of
nature.

Let us, then, refrain from teaching algebra as a tool subject for
the solution of obsolete and absurd problems, such as how long it
will take a dog to catch a rabbit or how long it will take an automo-
bile to overtake a bicycle. Let us not make algebra a monotonous
series of tedious drills.

When aigebra is regarded merely as a tool subject, when it is
taught in a mechanistic way, many pupils hate it, and there is justifi-
cation for their attitude.

Let us teach algebra as a real, living, power-giving subject.
Then, teaching algebra will become an enjoyable occupation, and
studying it will be a thrilling, happy experience.

It is natural for human beings to use symbols even in childhood.
The toy automobile is a symbol for a fire truck or a five passenger
car. The doll is a symbol for a darling baby, a little boy, or a little
girl. Some see a symbolism in all nature and, as an illustration, think
of a flower as a symbol for a divine thought. For these reasons, al-
gebraic symbols are not to be taught as meaningless characters to be
juggled at will. Algebraic symbols are to be taught as the normal de-
velopment of the natural instinct to symbolize. Leading pupils to see
that the symbols of algebra may be used to represent elements and
factors in real life just as toys are used, leading pupils to see that by
the use of symbols formulas may be written which represent real
relationships, leading pupils to see that the symbols and formulas of
algebra show the order that pervades the universe, leading them to
see how the laws of nature may be interpreted and controlled by the
aid of algebra is leading them ultimately to appreciate more fully the
laws of God.

Specifically, this means the teaching of all things concretely as
far as possible, so that negative numbers actually can be observed as
common in the daily life of the people, so that pupils in the class-
room can derive simple formulas experimentally or demonstrate
dramatically the existence of complex numbers.

When pupils realize that algebra is a subject shining with beauti-
ful symbols, that the formulas most commonly used are the simplest
ones, and that algebra when taught concretely may be easily under-
stood by the normal student, then pupils like to study it and teachers
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like to teach it. The study of algebra begins to give real pleasure just
as soon as pupils see that it gives a broader and fuller meaning to
life, and this pleasure increases as to this power of interpretation is
added the power to control nature.
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On the Role of Geometry in
Science!

Frank W. Bubb
Washington University
(Vol. XXXVII No.1 January, 1937)

Iwish to explain how geometry guides—one can even say dic-
tates—the development of natural science.

In presenting this thesis, I must call attention to certain aspects
of geometry not commonly emphasized. Geometry is usually re-
garded as a measure of external space. In popular conception this
body of knowledge is supposed to have been put into permanent
form by a Greek gentleman named Euclid. Both of these beliefs are
entirely untrue.

Our knowledge of space is obtained through the senses. The
sensory apparatus may be likened unto a lens system which throws
upon the mind an image of external space. Geometry is our knowl-
edge of this mental image, and this internal picture may or may not
be a faithful reproduction of external space. I shall show from his-
torical evidence that geometry has, during the last two thousand
years, undergone some startling changes. Now surely it is easier to
believe that these changes have occurred in our conceptions of space
rather than in external space itself.

I think I had better try to impress upon you more clearly the dis-
tinction between external space and these several internal or mental
images thereof. Ican make my meaning clear if you will perform an
experiment with me. Close your eyes (after a moment) and imagine
or visualize yourself standing, say, before your own home. Enter
your house, in imagination, and walk through the various rooms,
noting their arrangement as well as that of the furniture. You may

Y Address before the Physics Section of the Central Association of Science and
Mathematics Teachers in St. Louis, Missouri, November 27, 1936.
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indulge your fancy a bit by rearranging the furniture. You will quite
miss the point of our experiment unless you stop long enough . . .
to exercise thus your space intuition. You may picture internally in
this manner any familiar scenes, persons, and events. You may
dramatize your past and attempt to visualize your future. It is this
power of the mind to construct pictures (of the lovely heroine, for
example) which enables you to enjoy reading books. Without this
power, you could not betake yourself from your work to your home
in the evening; it would be unsafe for you to go anywhere beyond
your immediate range of eyesight. You can (and if you performed
the experiment proposed above, you did) visualize a distant scene so
vividly that you are bewildered for a moment upon coming out of
such trance-like state. Then is the time to ask yourself where is that
place in which you seemed to be but a moment ago. You were not
in that distant place itself. If you have an astral double, it may have
gone there, but certainly your body did not. Neither is that place
inside your head; your head is not large enough to hold that house.
But there certainly is something inside your head corresponding to
external space. This is what I call the mental picture frame. This is
the internal filing cabinet wherein we store our perceptions. This is
the seat of our visual memory. This is the laboratory wherein we
make our mental constructs, develop and fit together those abstrac-
tions called the concepts of science.

Is the internal picture frame, which a person may have, a faithful
representation of external space? I shall let you judge of this by ac-
tual example.

The ancients, before the time of Euclid, had a 2-and-1 geometry.
They conceived all horizontal directions to be alike, thus forming a
homogeneous 2-dimensional manifold. But the one vertical direc-
tion was conceived to be unique and different in nature from any of
the horizontal directions. Gravitation was so universal a phenomena
that apparently it was not thought necessary to explain it.
Gravitation was simply part of the uniqueness of the vertical.

Children seem naturally to form this 2-and-1 conception of
space, a matter which may be verified by conversation with almost
any little person who has competence in self-expression. I had a
most interesting talk with one little chap who was hearing for the
first time that the Earth is spherical. He objected at once, pointing
out to me the fact that the vertical is different than the horizontal. He
wanted to know how people on the opposite side of the earth cling
on to its surface, why they do not start sliding when they journey
too far, why the oceans have not run off, and demanded the why-
nots of certain other phenomena which his imagination led him to
expect. In short, by the simple device of extrapolating the vertical
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parallel to itself, he proceeded in masterly fashion to demolish my
absurd notions on the sphericity of the Earth. And to clinch the ar-
gument, he challenged me to step off the roof and test the essential
correctness of his views. I am having a slight measure of success in
persuading this small Newton that his assumption that all verticals
are parallel does not agree with experience.

The ancients extended this local horizontal-vertical partition of
space to the uttermost limits, and consequently supposed the Earth
to be flat, as children do. Upon the seas, mariners feared to sail too
far lest they go over the edge into the bottomless abyss of space.
Sailors who failed to return were commonly supposed to have per-
ished thus.

Such a flat world had to be supported somehow. To perform
this function, the orientals posted an elephant at each one of the four
corners. But this is not enough. Some scientifically minded fellow,
lacking in respect for his ancestors, eventually raised the question as
to what the elephants stand upon. The question cried as logically for
answer as the original question concerning what supported the
Earth. The question was answered by asserting that the four ele-
phants stand upon the back of a turtle, a sturdy turtle. But the ques-
tion recurs and the suite of answers caused the foundations of the
Earth to take on resemblance to a totem pole.

This question as to the foundations of the Earth is important be-
cause it provides a perfect example of how growing science dis-
poses of some quite logically formulated questions. Science has
never answered the question as to what supports the Earth; it quietly
murdered the question, made it nonsense. The question as to how
empty space transmits the enormous gravitational force between
Earth and Moon is of this category. This gravitational problem,
which has produced since the time of Newton some 200 theories (at
least 199 of which must be wrong) as to means of transmission, is
not answered by relativity. It is simply removed; the force does not
exist. And there are doubtless numerous questions now tormenting
us poor humans which have intrinsically no meaning, no matter how
logically they may now appear to demand answers.

The common device for explaining natural phenomena in the
ancient 2-and-1 cosmogony was the nature-myth. Rivers flowed
because local river gods pushed the waters along. The Sun rolled
across the heavens because it was dragged by the chariot of a
mythological being. The winds were controlled by angels who
stood at the four corners of the Earth. Heaven above, hell below,
and the Earth between were filled, each with a diversity of gods and
demons: Zeus with his thunderbolts, Pluto with his fires, and
Poseidon with his storms. Greece is still dotted with the ruins of
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temples dedicated to their propitiation. Natural phenomena occurred
or did not occur according to the caprice of gods and demons. The
nature-myths peopled the Earth, the skies, and the seas with living
beings, as senseless and savage as those who framed them.

What was this 2- and-1 geometry? We now regard it as a dis-
torted mental image of space. This affords an example of the point I
made above that geometry is our knowledge, not directly of external
space, but of the internal space image. For, surely no one except
children now regards external space as actually shaped according to
this ancient model.

There can be little doubt that our conception of space is inti-
mately bound up with the particular sensory equipment which hu-
mans happen to possess. Now the problem of perception is given
little attention by the scientist in spite of the emphasis placed upon it
by the philosopher and psychologist.

Let us examine, if only for a brief moment, the sensory equip-
ment of the natural philosopher. He is endowed with five senses
which enable him to partake, slightly, in the profound actions of
natural forces. He can not participate intimately in chemical reac-
tions; he can not be dissolved, go colloidal, or explode. Perhaps he
might do one of these things but his knowledge of what had hap-
pened to him would not be available to the rest of us. He can not
indulge with too much abandon any taste which he may have for
thermodynamics; he might be gassified one way or solidified the
other. He can not personally commune with lighting flashes. In
short, he is careful to stand well away from and intrude himself only
with circumspection into the affairs of nature. Most of what he
knows has not come to him through his sensory channels; he has
invented most of it. His senses are like the pinhole of a pinhole
camera. Through this pinhole he peers out at the world. And just
how tiny this pinhole is is rather frightening. It makes one feel like
a child lost in the dark when one realizes the vast extent of the reality
which one seems barred from ever perceiving directly.

How, in view of this, can one believe that the external world is
shaped the way we now conceive it to be? Or to put the same ques-
tion differently, how can we expect the mind to construct within the
convolutions of the brain a framework which shall be a faithful rep-
resentation of the external world? Isn’t it possible that space-time is
just our mode of thinking about external phenomena? Do we not
externalize this way of arranging our perceptions and conceptions
and superimpose this framework upon the external world? The
historical evidence that geometry has changid, although, alas! with
evolutionary slowness, is positive evidence for this view.
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I shall anticipate here a question which someone is sure to ask.
If one should train oneself to think with facility in four dimensions
when one is young and before one begins to believe the external
world is three dimensional, namely, if one were to develop sys-
tematically a mental four-dimensional framework, would one then
externalize this mode of thought and regard the external world as
four dimensional? I think so. Unfortunately, I studied the proper-
ties of four-dimensional figures after I was taught to regard the ex-
ternal world as three dimensional. But in spite of this handicap, I
occasionally glimpse relations which can not be expressed in three
dimensions.

But let us return for a moment to the ancient 2-and-1 geometry.
In this framework, gods and demons were regarded as the efficient
causes of things. Mythologies, which are now regarded as nothing
more than poetic fancies, were then both the science and religion of
their times. Nature-myths were the explanations of natural forces.
They were attempts at rationalizing natural phenomena. And that is
precisely the purpose of any of the accepted theories of modern
physics.

Such was the grotesque scientific picture which our ancient
brethren painted in their 2-and-1 picture frame. But within such a
distorted, poorly shaped frame, how could anyone paint other than a
fantastic picture?

The next frame for our mental picture of the universe was con-
structed by Thales, Pythagorus, Euclid and others. We shall call
this the homogeneous 3-frame because all directions in space were
conceived to be alike in geometric properties. This homogeneous 3-
geometry makes room for a spherical Earth. In this enlarged frame,
the 2-and-1 geometry appears as an unwarranted extension of the lo-
cal horizontal-vertical partition, which we make of space. The 3-
frame permits individuals at different points upon the Earth to make
their own local horizontal-vertical partition, as each individual will if
he wishes to keep head-end up.

In this picture frame, which goes by the name of Euclidean
Geometry, many artists have wrought. Isaac Newton nearly filled
the picture with his cosmic theory, a stupendous structure.
Magnificent designs such as Maxwell’s electromagnetic theory en-
dow the picture with life. The radiant patterns of Fresnel and
Michelson, of incredible delicacy, transcendent beauty, adorn this
wonderful picture. This is no dead thing wrought in metal, painted
on canvas, or cut in stone to catch a fleeting mood. This is a repre-
sentation of nature herself. Its beauty consists in the play of intelli-
gence upon matter, spirit upon energy, and the scientist is an artist
vastly more subtle than the greasy fellow who smears paint upon
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canvas. His creations are so convincing that he frequently fools
himself into believing that he has grasped reality itself instead of an
image thereof.

In order to show what I mean by the assertion that geometry
dictates the form and content of scientific concepts, I shall become a
bit technical. I make the point by discussing a bit critically the sim-
plest of the physical sciences, statics. This branch of mechanics
consists of four basic items. '

(1) The Concept of Force. In our recurring groups of muscular
sensations, we find the thing we call force and in it the properties of
direction, magmtude and position. To construct a geometric image
of force, we draw a line through the point of application of the
force, in the direction of the force, make its length equal to the
magnitude of the force to some arbitrary scale of length, and place
an arrow on the line to indicate the sense of the force one way or the
other. So far as statics is concerned, we assert that such a directed
line or vector is a perfect symbol of force.

As a matter of fact, there are many properties of force which this
geometric symbol is incapable of depicting. For example, a force
never acts at a point but is always distributed over a finite area.
There is nothing about the vector to indicate for how long a time the
force may be applied, whether it be moving or at rest, whether it be
applied with kindly or malicious intent; yet a force which is moving
and doing work is quite different than a force which does no work.
However, we end this quibbling by defining statics as that branch
of mechanics which concerns itself only with those properties of
force which are represented by the vector symbol.

(2) The Moment of a Force. The moment of a force about a
point is represented by and thought about in terms of precisely the
same geometric symbol we use to represent force, the vector or di-
rected straight line segment. The moment vector is constructed as
follows. Pass a plane through the point in question and the line of
action of the force. Through the point erect a line perpendicular to
this plane: this line is called the moment axis. Lay off along this
moment axis a length equal, on any arbitrary scale, to the product of
the force by its moment arm or perpendicular distance from the point
to the line of the force. Place an arrow on this moment vector to
indicate the sense of the turning moment, clockwise or counter-
clockwise.

Moment is a derived concept. The fundamental concept, formu-
lated from experience and intelligible only in terms of experience, is
force.

(3) The First Law of Statics. If a body be in equilibrium under
the action of a number of forces, the vector sum of these forces is




zero; namely, if the vectors be put by parallel transiation into a con-
current chain, the end of the last vector in the chain coincides with
the origin of the first. This law is a generalization from experience.
It is sometimes called the parallelogram law.

(4) The Second Law of Statics. If a body be in equilibrium un-
der the action of a number of forces, the vector sum of the moment
vectors constructed through any point in space is zero. Thislawisa
generalization from experiment. It is also called the principle of
moments.

These four items plus Euclidean geometry constitute the science
of statics. These four items are obviously geometrical: they fit the
Euclidean frame. There is no problem, theorem, or method in stat-
ics, however it may be disguised analytically, which is not geomet-
rical or which may not be made so.

Other classical sciences are likewise geometrical in structure.
Most of them are more complicated than statics. For example, the
Lorentzian formulation of electricity and magnetism employs six
scalar or one-component quantities, eight vector or three-component
quantities, and two dyadic or nine-component quantities. These are
connected by some fifteen equations in the nature of defining rela-
tions or experimental laws. They geometrize electricity and mag-
netism quite as completely as the four fundamentals of statics ge-
ometrize that science.

In fact, we may summarize the structure of classical science
quite briefly. The concepts, the things we call causes and effects, of
classical science fall into a regular hierarchy of geometric figures
called tensors. The simplest of these is the tensor of rank zero or the
scalar having one component such as mass, temperature, energy,
action, entropy. The next is the tensor of rank one or the vector
having three components such as force, moment, velocity, accelera-
tion. Then comes the second order tensor or dyadic having nine
components such as the inertia dyadic used in rigid dynamics and
consisting of the moments and products of inertia of a rigid body.
The nine stresses at a point in an elastic body make a dyadic and so
do the nine strains at that point. The hierarchy continues with the
numbers of components mounting in pOWers of three. Thus the 81
elastic constants required to express Hooke’s linear relation between
stresses and strains make a fourth order tensor (although the number
of independent componenis is reduced to about one fourth that num-
ber by symmetrical properties of the stress and strain dyadics.) All
these conceptual forms are represented by characteristic geometric
figures. Thus the first order tensor is represented by a directed line
segment. The second order tensor is represented by a second degree
surface, such as stress, strain, and momental ellipsoids. This ex-
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plains what I mean by saying that the form or structure of the con-
cepts of classical science are made to fit into the Euclidean picture
frame.

The manner in which the fundamental concepts of a science con-
nect with our experience is the vital part of science. The marvelous
accuracy with which our abstractions, our thought symbols, fit upon
and describe experience; the exactness, completeness, and artistry
with which we frame the basic concepts of a science; this part which
is not a matter of reason alone is the part which grips our imagina-
tion, satisfies and awakens the creative instinct. And it is in just
these things, these roots which lie below the reach of reason, which
are grasped only by the intuition or artistic appreciation, that a
science has its most intimate contact with reality. And we seek, as
Alexis Carrel puts it in his book Man the Unknown, in the external
world only those things which may be geometrized; and geometry
is, in all probability, a thing not of the external world but a thing
within ourselves.

The pretensions of the ancient 2-and-1 mythology stand discred-
ited: no one believes any longer in Zeus. The homogeneous 3-di-
mensional picture called classical physics is now in its turn becom-
ing discredited under the attacks of the quantum and relativity theo-
ries. It was, no doubt, difficult for our forebears to abandon their
faith in nature-myths and accept the classical picture of nature. The
effect of mass faith is not only to inhibit original thinking but to
punish quickly such a breach of manners. Socrates and Aristotle
both poisoned themselves to escape the conscquences of having de-
nied the nature-myths of ancient Greece. It will be difficult for
many scientists of the present day to abandon their faith in the
Euclidean-Newtonian myths.

Is it necessary to put one’s faith in any science? Is it even desir-
able? Surely the history of science shows it to be a man-made and
continually changing scheme for thinking about nature. If one
scheme works well, let us praise the artist who conceives the
scheme. But it is unsafe and unfair to bind the next generation in the
bonds of faith and prevent the construction of a better picture. Why
should we not be taught to regard science as a game, leaving out, as
the mathematician does, the element of faith.

I shall cite one, among many possible, series of modern scien-
tific nature-myths.

Not many years ago, perhaps not beyond the memory of some
of you, electricity was regarded as a sort of “fluidic virtue.” For
more than two hundred years a controversy raged as to whether
there were two electrical fluids or only one. Then came the discov-
ery of the electron by J. J. Thomson. He conceived it to be a tiny

62
172




sphere of negative electricity. The objections of some of his con-
temporaries that this conception was impossible because such an
electron ought to explode under its own inverse square law of re-
pulsion were gradually silenced by the success of the conception,
although the question, as a matter of fact, was never met. Some ten
years or so ago the electron, in the hands of Schroedinger, expanded
in the most astounding fashion from a mere concentrated speck until
each individual electron filled the whole universe. If one may still
apply the definite article to such a conception, the electron operated
through a mysterious function called y the square of whose absolute
value was vaguely reminiscent of charge density, but whose princi-
pal duty was to remain finite, single-valued, to vanish at infinity,
and be quadratically integrable. This view of the electron as a mass
of waves filling the whole universe again underwent modification.
The newer view, proposed by Max Born and Norbert Weiner, as-
sociates y with a probability. Thus, one is free to form practically
any picture one may fancy of the electron itself, but one must agree
that y times its conjugate complex i is the local probability that
the electron, whatever the thing may be, is somewhere about. In
these y spaces, one part keeps in touch 'with another by means of
little messengers whose essence was described by the term proba-
bility packets. These packets of perhaps or maybe travelled hither
and yon on the business of the atom. Now I submit that there is
nothing in the ancient mythologies or even in Saint John’s
Revelations to match these ideas for sheer fantasy. Those concep-
tions quite surpass that transcendental operation whereby Lewis
Carrol detached the grin from the Cheshire Cat. My practical point
here in citing this example is that all these conflicting conceptions
can not be right, yet some or all of us have believed them. I think
we could have played the game just as well without believing in
anything more than the convenience of these conceptions.

The most effective means of showing the scientific apprentice
that his science is a man-made scheme for thinking about nature is to
make him read sympathetically the history of science. He will dis-
cover that the causes which man has found or thinks he has found
operative in nature are pure romance. He will find that certain facts
and mathematical formulae stand out like rocks but that those things
he calls causes, those things which for the moment make the picture
intelligible, are naught but shifting sands formed by his fancy into
all sort of fantastic figures. Thus he will find out for himself that the
Ptolemaic theory of the heavens was a beautiful theory and that it
worked. He finds that Camnot derived the second law of thermody-
namics from the old phlogiston theory of heat, and that this law not
only worked then, but continues in good standing. He finds that
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river-gods pushed water along in the rivers until Isaac Newton in-
vented the gravitational force. He now finds that rivers flow be-
cause of the curvature of space-time. There is reason to believe in
the efficiency of Einstein’s space-time curvature; there was reason to
believe in the efficiency of Newton’s gravitational force; and, in
spite of the fact that a river-god does not fit nicely into an equation,
he was, at least, sufficient cause for the water’s motion. Why
should one believe in the reality of any of these “causes” just be-
cause they fit into the picture? Surely the only reasonable require-
ment of a picture is that it possess realism, likeness to reality.

Before passing on to a discussion of the latest conceptions of
space-time, I must point out certain limitations of the time concept as
itis used in the classical theories.

The role which time plays in science developed slowly. The re-
currence of night and day and the regular procession of the seasons
must have impressed themselves upon man very early. But the first
effective use of time in the present mechanical (and not astronomi-
cal) sense appears to have been made by Galileo who, in 1581,
timed with his pulse the swing of a lamp in the Cathedral of Pisa and
discovered that its period was independent of its amplitude of
swing. Certainly he made effective use of his discovery, for by
employing the principle of the pendulum he constructed an accurate
clock and by its use discovered the laws of falling bodies. Upon
this reasonably firm foundation, the science of mechanics developed
rapidly, particularly in the hands of Newton. And with the basic
science of mechanics established, the classical picture was rapidly
sketched in as to its broad outlines. Incidentally, the homogeneous
3-geometry of Euclid passed over gradually into a 3-and-1 manifold,
3-space and 1-time.

According to Newton, “Absolute, true, and mathematical time
flows in itself and in virtue of its nature uniformly and without ref-
erence to any external object whatsoever.” All motions may be ac-
celerated or retarded, but the flow of time can not be changed. The
same measure of persistence and duration applies to all things
whether their motions be rapid or slow. If the progress of every-
thing in the universe were exactly reversed, the flow of time would
be unaffected. In other words, throughout its vast extent, all events
in the universe click with our little whirligigs; they always have
marched to the tune of our clocks, are now so marching, and will
always do so. The little whirligig is the pulse of and runs the uni-
verse. One is reminded of Rostand’s chanticleer whose crowing is
the Sun’s signal every morning to arise.

Is it not possible that this unique, absolute and universal time
coextensive throughout the universe may be merely an extension,
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purely imaginary as to its reality, of our local time, comparable to
the extension throughout all space of the local vertical made by the
ancients? The answer to this question gives us our next picture of
the universe.

Hermann Minkowski, in a notable address entitled Raum und
Zeit delivered to the Cologne meeting of the Scientific Congress in
1908, sketched in broad outline the new picture frame. He seized
upon a peculiar interpretation which Einstein had made of certain
experimental results due to Michelson, Fizeau, Trouton and Noble,
Rayleigh and Brace, H. A. Wilson, and others, all of which exhib-
ited a certain family failing in refusing to live up to the requirements
of classical science. Without going into details of this family failing,
we may say briefly that Minkowski advanced cogent reasons for
suggesting that a homogeneous 4-geometry of space-time might
work better than the 3-and-1 space-time of the classical theory. He
suggested that the local classical partition, space-time, had been ex-
tended too far. Time is undoubtedly experimentally distinguishable
from space locally, just as the vertcal is locally distinguishable from
the horizontal. But just as the vertical at a point, say, on Mars is not
the same as the local vertical, so may the time at that point on Mars
be not the same as the local time. I quote from Minkowski’s lecture:
“In nature all is given; for her the past and future do not exist; she is
the eternal present; she has no limits, either of space or of time.
Changes are proceeding in individuals and correspond to their dis-
placements upon worldways in a 4-dimensional eternal and limitless
manifold. These concepts in the region of philosophical thought
will produce a revolution considerably greater than that caused by
the displacement of the Earth from the center of the universe by
Copernicus.”

The essential features underlying both Einstein’s special and his
general relativity theories was pointed out nearly a century ago, in
1854, by Bernard Riemann in his doctor’s thesis, On the
Hypotheses which Lie at the Foundation of Geometry. Riemann
noted that the propositions of Euclid may be divided into two
classes: those having to do with numbers, ratios, measurements,
and on the other hand those having nothing to do with these matters.
All propositions having to do with measurements are called mezrical
propositions, and are, one and all, dependent upon the theorem of
Pythagorus to the effect that the sum of the squares of the legs of a
right triangle equals the square of its hypotenuse. That part of ge-
ometry exclusive of metrical propositions is called affine geometry.
This part, affine geometry, is common to all geometries, and the
various geometries differ only in the metrical propositions. Before
proceeding to lay down his various types of geometries, Riemann
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interchanged the Theorem of Pythagorus and the Parallel Postulate,
that is, he elevated the 47th proposition, called the Bridge of Asses
by the British, to the rank of axiom and relegated the Parallel
Postulate to the status of a theorem in Euclidean geometry. The new
axiom is called the metrical axiom. Hence, according to Riemann,
geometries differ only in their metrical axioms. Inasmuch as the
metrical axiom is logically independent of, namely, can not be de-
duced from, the nonmetrical axioms, he pointed out that we might
assume any other metrical axiom and obtain a geometry as logically
consistent as that of Euclid. The three types of geometries, elliptic,
Euclidean, and hyperbolic, are characterized by the assertions that
the sum of the squares on the legs of a right triangle are greater than,
equal to, and less than the square on the hypotenuse.

We usually characterize Euclidean geometry by the Cartesian
quadratic form, dx?+dy?=ds?, where dx, dy are the legs and ds the
hypotenuse of a right triangle; occasionally by the plane polar
quadratic form ds?=dr?+r2d9+; and on rare occasions by more com-
plicated coordinates. All these forms characterize the same flat
Euclidean geometry, for anyone of the forms may, by a continuous
coordinate transformation, be carried over into another. However,
the rather simple quadratic form ds2=a2d0?+a?sin0dy?, which
belongs to a sphere of radius a, can not by any continuous
transformation be expressed in any of the above forms. This, inci-
dentally, is the reason why a sphere cannot be rolled out upon a
plane without altering lengths, angles, and areas. The last quadratic
form is the axiom of 2-dimensional spherical geometry. In this ge-
ometry, the sum of the interior angles of a right triangle exceeds two
right angles; it is impossible to pass through a given point a line
parallel to a given line; two straight lines (straight in the precise
sense in which straight line is defined in Euclid, namely, as being
the shortest line connecting two points on the sphere) intersect in
two points; together with many other propositions which are false in
Euclidean plane geometry. Geometries of this kind are called curved
or non-Euclidean geometries.

I shall discuss briefly the special relativity theory. The funda-
mental element in Euclidean geometry is, of course, the point. In
the new space-time 4-dimensional geometry, the fundamental ele-
ment is the event. An event occurs when something happens at a
particular point (of Cartesian coordinates x, y, z, say) at a particular
time, t. Thus the event has four coordinates, x, y, z, t. The interval
between two events (X;, ¥y, z;, ;) and (X3, y2, 23, £;) may be writ-
ten as dx=x;-x,, dy=y;-y,, dz=2;-z3, dt=t;-t;. The new metrical
axiom adopted by Einstein asserts that two different observers
(ourselves and our friend on Mars) agree on the quantity
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ds?=dx?+dy?+dz2-c2de? = dx’2+dy’2+dz’2-c2dr’?, where c is the
velocity of light. Either one of the sides of this equation is called
ds2, and ds is called the space-time interval. The appropriateness of
the name is apparent since the quantity is obviously a combination of
length and time.

Since the two observers previously agreed both on the space part
and the time part of the interval, this generalization seems mild
enough. However, it commits plain murder upon the time-honored
notions of Euclid, Galileo, and Newton, for it now permits them to
disagree on both the time and the space parts and only requires them
to agree on the space-time interval. Furthermore, it requires that all
the concepts of natural science be reshaped to fit the new picture
frame. One or two examples will suffice to show this effect.

Obviously a vector can no longer have only three components; it
must have four if it is to be made in imitation of the new four-com-
ponent space-time interval. If not, it will not fit the new picture
frame. Thus, our old friend, the 3-vector momentum (mvy, mvy,
mv;,), takes on a fourth or time-component, mc, where m is the

mass and c is the velocity of light.2 Two different observers must
agree on the quantity

(mvx)z-*-(mvy)z+(mvz)2-(mc)2=(m’v'x)2+(m'v'y)2+(m'v'z)2-(m'c)2.

In particular, suppose the primed observer to be moving with the
mass m’: he gets zero for his estimate of the velocity, and measures
the mass-momentum vector as simply m’c. This particular mass m’
measured by one relative to whom the mass is at rest is called the
rest mass. Solving the above equation for m in terms of m’, we
have

m = m’IN1-v2c?

This means that the mass is a function of the velocity: the greater the
velocity, the greater the mass as measured by him relative to whom
the mass is moving. Similar generalizations are made for other
three-vectors. The electric 3-vector current takes on a fourth or time
component, pc, where p is the charge density. The old 3-vector
force of classical physics adds a time component, the activity or
power, namely, the rate of doing work. Cn the contrary, the classi-
cal 3-vectors, electric and magnetic force, do not take on classical

2To be strictly accurate, this is not a 4-vector. In the mass-momentum 4-vector,
m is the mass density
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scalars to make 4-vectors; the two are combined into a single con-
cept, a second order tensor whose 16 components are reduced by
skew symmetry to six independent components, for which reason
the electromagnetic field is called a six-vector, although this termi-
nology is poor. '

The theory of relativity is, properly speaking, not simply a the-
ory; it is a program for the generalization of classical science. The
new forms are not to be deduced from the classical concepts; they
are to be made over, reshaped. The new concepts are analogous, if
you please, to the classical concepts, but this is quite a different
matter than suppesing them to be logically dependent upon classical
forms. The new science is a separate structure, being erected not
upon the foundations of classical science, but as an entirely new
structure. Just as the causes and effects of those mythological ani-
mals of classical physics were dragged from the land of imagination
over the Pythagorean Bridge of Asses, so are the newer, more
multi-headed myths to be brought into science over the Einsteinian
Bridge, his newer metrical axiom.

But perhaps this is enough of the special relativity theory to con-
vey what is relevant here. And besides, the theory has already been
found to be inadequate. Whilst it works better than classical
science, it offers no explanation of gravitation one whit more ra-
tional than Newton'’s.

And now comes Einstein again. Having pondered for a number
of years after stating his special theory, it occurred to him that he
had been, in effect, doing exactly as the classicists had done. In ac-
cepting his special relativity metric, he had fixed the frame of his
picture, just as the Pythagorean metric had fixed the classical picture
frame. Possibly phenomena refused to fit into this rigid frame be-
cause of its form. The special relativity frame was better than the
Euclidean, but why take a fixed frame? This brings us to the next
attempt to find a suitable picture frame.

In his general relativity theory, Einstein still clings to a homoge-
neous 4-geometry. But he assumes an elastic, not a fixed, frame.
He takes for his new metrical axiom the most general conceivable
quadratic form, ds? = Xg,,dx,dx,, where the 16 (10 independent)
coefficients g,, may be functions of the four coordinates, and
where he does not say to begin with which one of the four coordi-
nates is the time, leaving the question open, in fact, so that the time
may be found to be a function of all four of the coordinates.
Leaving the g functions undetermined, he took over Riemann’s gen-
eral propositions and let physical phenomena themselves decide
upon the form of the space-time frame. That is, he took phenomena
as it appears from careful measurement and attempted to fit the pic-
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ture frame to the picture. The analytical details of this picture frame
construction are out of place here. Suffice it to say that Einstein did
succeed in masterly fashion in geometrizing the gravitational phe-
nomena.

Unfortunately, this is not yet the end of the matter. The present
metric of relativity does not permit of the simultaneous geometriza-
tion of both mechanics and electromagnetism, which also exhibits
“forces” acting through empty space. The theory which shall ac-
complish this miracle is already named the Unified Field Theory, but
it is not yet formulated. There have been several attempts, notably
by Einstein, Weyl, and Eddington, to construct a unified field the-
ory; but upon comparison of the facts of measurement with the pre-
dictions of these theories, none have stood the test.

The most valuable contribution of the relativity program appears
then to be one of method. Instead of accepting a geometry fixed in
form and seeking to force phenomena to fit it by the invention of
divers fantastic “causes,” we set ourselves the task now of seeking
that frame for our picture which best fits upon nature, letting nature
herself be judge of the excellence of the fit.

There is now coming over the horizon a new possibility which
may have an important effect upon our notions of space and time.
In Dirac’s one of the various formulations of the quantum mechan-

ics, a new type of concept appears called the spinor. The simplest
spmor is a two-component entity, a sort of square root of a spec1a1
relativity 4-vector. The components of a spinor do not fit nicely into
our picture frame. We can not lay off one component along x, one
along y, one along z, and one along . Yet it is possible to show by
the theory of groups that any special relativity equation between ten-
sors may be translated into an equivalent equation between spinors.
What does this do to all the imagery, the mythology, the causes and
effects, behind our equations? Tensors have certain intuitive prop-
erties; they fit into the frame. But spinors are so queerly shaped—
they even involve the hitherto little used imaginary numbers—that so
far only certain combinations of them can be made to fit the picture
frame. It is an interesting speculation (I offer it as nothing more)
that these new “causes” and “effects,” namely, the spinors, may
later on produce rather violent changes in our notions of space and
time, particularly if some mathematician succeeds in formulating
some similar concept covariant to general relativity transformations.

Thus I say that Geomerry, the first and noblest of sciences, has
played in the past and will probably continue to play the dominant
role in science. It certainly dictates the form and to some extent the
content of all scientific concepts. It is the stage upon which those
abstract actors, the causes and effects, play their scientific roles. It
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is the picture frame wherein that greatest of all artists, the creative
scientist, paints his pictures.

So far the natural philosopher has painted in his space-time
frame only the primeval 2-and-1 picture, the Euclidean 3-frame pic-
ture, the Galilean-Newtonian 3-and-1 picture, and the several
Riemannian-Einsteinian 4-dimensional pictures. But there are pos-
sible many such frames, and but these few are without form and
void, and darkness lies over their depths; but the creative spirit of
man will move over the face of their waters and people them with
his creations.




Now we try to make pupils realise that from studying
real phenomena one can get data which provide a
quantification of the behaviour of a phenomenon at the
time studied. When there are sufficient data (an
important condition both mathematically and
scientifically), we can select from it and propose a
model. This must be satisfied 'closely’ by the data; it
does not have to explain the interactions within the
phenomenon, and it may be useful for finding
extrapolated results.

P. G. Dean, 1975

Modeis and modeling are part of the fabric of

science; instruction in science and mathematics

as well as the curriculum should so reflect them.
D. H. Ost, 1987

VI. Science and
Mathematics in a
Technological Age

We are told that scientific and technological knowledge
currently increases by 13 percent per year, thus doubling every
5.5 years, and that the rate is expected soon to jump to 40
percent per year--a doubling time of 20 months. Clearly an
education built on the transmission of information is
impossible. What is urgently needed is an education focused on
the use of knowledge in new and yet unanticipated situations,
and use, not by a select few, but by everybody.

P. A. House, 1988
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A View of Computing,
Mathematics and Science in
British Education

Peter G. Dean

University of London Institute of Education
(Vol. LXXV No. 1 January, 1975)

Introduction

Modelling and simulation could be a link between science, math-
ematics, and computing courses for the more able British secondary
pupil. The teacher is prepared to include new methods if he thinks
that they will help him to teach his subject. We must encourage the
development and use of computer programs which can be integrated
into a teaching scheme.

The Development of Computing for Education

Only since the early 1960’s have computers been available in
education, and then you needed experience and understanding of the
machine before you could get information in or out. In the few
British schools which had access to a computer it was normally used
by the mathematics teachers. They taught a programming language
to some of the mathematics pupils and then encouraged them to
write useful programs. Some of these useful programs were a
stimulus in the next stage of development, for the teacher kept them
as ‘library programs’ and provided copies of them for other schools.
They now began to be valued as a teaching resource rather than as a
programming exercise, and we saw the beginning of computing for
education. Even at the enda of the decade (1969) the position was




well described by Bryan'’s introductory remark!, “It is difficult to
report on ‘Computers and Education,’ because the topic is so new
and what it includes is so fragmentary that it almost defies concise
description.”

It is gratifying to see how the situation has developed just four
years later. There are now many schools with telephone access (on-
line mode) or courier access (batch mode) to a computer whose
control is within the capabilities of most teachers and secondary-
level pupils. Education authorities appoint advisers in computing,
who organise courses for teachers and who encourage working and
interest groups. There are thus many mathematics teachers, but far
fewer science teachers, who are on the ‘inside’ of computing for ed-
ucation. They develop various programs and texts and make use of
similar materials obtained from educational or commercial sources.

Our big problem is to prove to teachers on the ‘outside’ of com-
puting for education that it may contain something which will help
them to teach better.

The Teacher and Interdisciplinary Studies

“Changing the curriculum is a matter first of changing people
and attitudes.”? Most mathematics and science teachers have been
trained in one subject, have evolved satisfactory ways of teaching
this, and are not dissatisfied with the work they are doing. This
should be considered as the base from which interdisciplinary stud-
ies must grow if we wish to involve many teachers.

A realistic expectation is that we will retain the structure of a
school system which recognises subject departments and teachers,
and that by crossfertilisation each subject will in part relate, and be
seen to relate, to other subjects. It is interesting to look for a moment
at actual developments within the School Mathematics Project?
which use computing. Their library programs include FOXRAB
(foxes and rabbits; growth and decay of two populations), LIFE
(cellular growth and decay), and LUNAR (a lunar module to the
moon) which all encourage explorations in the field of science.
However these are presumably being used by teachers and pupils of
mathematics in the expectation of giving “new insights into mathe-

1Bryan, G. L. “Computers and Education,” Computers and Automation, 18.3
(March 1969), 16-19.

2Rogers, G. “Curriculum Reform and Teacher Reform in the Secondary School.”
London Sducational Review, 1.2 (Summer 1972), 39-44,

3SMP. Westfield College, Kiddepore Avenue, London W3,
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matics” and a “better understanding of mathematics.”* Here we see
the genesis of an ‘infiltration method,’ where the teachers can use
computing, biology, and physics alongside a syllabus with which
they feel secure. This method of crossfertilisation has begun natu-
rally and may be the one most likely to succeed.

In Britain, in-service courses in Modern Mathematics or
Nuffield Science have attracted large numbers of teachers of the rel-
evant discipline, but teachers have been reluctant to enroll for
courses such as Computing for Science Teachers, let alone for Links
Between Science and Mathematics. Thus it seems sensible to meet
teachers in their subject groups. The other week I, a mathematician,
led one session of a course for chemistry teachers and was amazed
at their interest and enthusiasm when they saw a direct relevance
with their subject. It is expected that all teachers will become entitled
to regular release for in-service training within a few years. Perhaps
we should plan to use this ‘infiltration method’ much more widely in
the subject courses or other training schemes which must become
available.

There is also the possibility of teachers developing an interdis-
ciplinary approach within a school, using the science pupils who
study computing. When writing or using programs, these pupils
may need advice from two or more teachers. In return the pupils can
give support to the mathematics teacher who lacks confidence with
his science, or vice versa. Teachers are often so busy with their own
subjects that they need this interest of a pupil to show the relevance
of some aspect of another subject.

The Development of Mathematics and Science Teaching

“The mathematics and science reformers have been working
with very similar philosophies. Both parties have been concerned
with (1) the search for big ideas, and (2) the search for the ways in
which children learn to handle them and apply them to the solution
of problems.” The interesting interdisciplinary development has
been the application to a sequence of different curriculums. The first
British reformers were dissatisfied (a very necessary catalyst) and
therefore set out to discover a better way of teaching their subject.

Typical outcomes were the School Mathematics Project3 and

4webb, N. G. G. “SMP Computing in Mathematics.” SMP duplicated sheet,
(May 1973).

SMatthews, G., and Seed, M. “The Co-existence in Schools of Mathematics and
Science.” International Journal of Mathematical Education in Science and Tech-
nology, 1 (1970), 21-26.
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Nuffield Biology.S Only after intensive work within their subjects
did the scientists begin interdisciplinary approaches such as the

Schools Council Integrated Science Project.S Similarly the mathe-
maticians began to integrate computing into tkeir curriculum.

There is now evidence of further developments which may en-
courage co-operation between science and mathematics teachers, and
two examples will suffice: (1) “Modern views in chemistry teach-
ing--certainly in schools--stand on two main premises: the method
of pupil investigation, and the empirical approach to generalisation .
.. In both these processes, mathematics is increasingly involved-.”7
and (2) “They (mathematics teachers) knew all the old stuff about
momentum and moments of inértia but . . . the real trouble was with
some of the ‘new-look’ examination questions. These tended to be
unorthodox, omitting to specify the assumptions to be made.”® As
with others I have experienced, these two are examples which I
would classify as infiltration towards interdisciplinary studies be-
tween mathematics, computing and science. Maybe infiltration is ail
that we should expect in the majority of schools during the 1970’s.

Modelling in Mathematics and Science

“, .. 1 would assert that the meaning of the concept of model is
the same in mathematics and the empirical sciences.” “There is
nothing wrong with Newtonian mechanics as a description of the
physical world as most of us see it. The fault lies in the simplified
models which we have to construct in order to make particular
problems manageable.”10 Many teachers have realised that they no
longer need to use very simple models to make particular problems
manageable when they have a computer to do the calculations. This
is certainly one way to make the computer serve the teacher. But,
joy oh joy, this release of a restriction so far borne can now lead us

6Centre for Science Education, Chelsea College, Bridges Place, London SW6.
7“Mathematics in Chemistry.” Paper written by a working party for the British
Committee on Chemistry Education, Duplicated sheets, (1970).

8Brown, M. “'Real’ Problems for Mathematics Teacher.” International Journal
of Mathematical Education in Science and Technology, 3 (1972), 223-226.
9Suppes. P. “A Comparison of the Meaning and Uses of Models in
Mathematics and the Empirical Sciences.” In The Concept and Role of the
Model in Mathematics and the Natural Sciences, International Union of History
and Philosophy of Sciences: D. Reidel, Dordrecht, Holland. (1961), 165.
10Fjisher, F. W. “Main mathematics in Colleges of Education.” The
Mathematical Gazette, LVIT, 402 (December 1973), 321-333.
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on to using models in different, and perhaps more enlightening,
ways.

A teacher who plans to work to a yearly syllabus cannot aim to
use a free discovery method, and he therefore provides guided dis-
covery. The same restriction applies when using computer mod-
elling, for it is unrealistic to expect a pupil to search almost at ran-
dom for his own model. It would also be difficult, if not impossible,
to program the computer to accept any model. The three likely alter-
natives are: (1) to provide one fixed model, and allow the pupil to
investigate different variables within it; (2) to provide several mod-
els, and allow the pupil to test each and decide which is the ‘best;’
and (3) to provide a generalised model which the pupil can particu-
larise. Which alternative we choose will depend on the phenornenon
being studied and on our educational aim.

Probably one aim is to understand the place of mathematical re-
lationships in everyday science. When I was a pupil at school, ap-
plied mathematics, physics, and chemistry appeared to me to include
many laws which stated how physical objects should behave; my
calculations gave the correct answer and the real objects did not--be-
cause of natural disturbances. Now we try to make pupils realise
that from studying real phenomena one can get data which provide a
quantification of the behaviour of a phenomenon at the time studied.
When there are sufficient data (an important condition both mathe-
matically and scientifically), we can select from them and propose a
model. This must be satisfied ‘closely’ by the data; it does not have
to explain the interactions within the phenomenon, and it may be
useful for finding extrapolated results. As illustration I take the topic
of chemical reaction kinetics, on which we have developed and used
a computer program and supporting texts. When used with a class,
only one pupil said he had not gained further understanding of the
need for the mathematical model

[Concentration] = [Initial concentration] ekt
which is part of the computer program.

The chemistry pupils had taken readings for at least one reaction
in a laboratory experiment, had plotted the readings, and had calcu-
lated the first-order rate constant. They were asked to supply their
values for the rate constant and initial concentration to the computer
model above. The computer calculated the concentrations at each
time interval, and the pupil was asked to decide whether it gave re-
sults ‘close’ to his laboratory readings. If he was satisfied with this
model he could go on to use it to investigate the calculated results for




other reactions, where the data were unknown to him but were pro-
vided from a table of experimental results. These included reactions
which were too fast, or too slow, for study in the school laboratory.

When used as described, the computer program is designed to
help chemistry pupils to learn about reaction kinetics. The study of a
chemical reaction put into a different teaching sequence could pro-
vide an illustration of the exponential function. This is a ‘real’ appli-
cation of a function studied by many mathematics pupils. They are
familiar with Figure 1 and can be led to see it as a model for Figure
2. Interesting discussion can come from the absence of points in the
second quadrant of Figure 2, and as to whether both curves are
asymptotic to some horizontal line. With several ‘real’ illustrations
from science the young mathematician should also get a better un-
derstanding of the relation dy/dx ay.
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Figure 1.y =™ Figure 2. C = Coekt .

A second aim may be to emphasise the strategy for solving a
problem with more than one variable. The method of controlled
change in one variable while trying to keep the others fixed is as
applicable in mathematics (e.g., combinations of reflections, rota-
tions and translations) as in science. In biology, where the interrela-
tionships are some of the most difficult to express, it is possible to
utilise models published in books!1:12 or in journals, where com-
puter modelling has been receiving increasing attention over the last
decade. Some programs are available in Britain, and phenomena

1gmith, J. Maynard. Mathematical Ideas in Biology. Cambridge University
Press, England, (1964).

12Slobodkin, L. B. Growth and Regulation of Animal Populations. Holt
Rinehart and Winston, New York, (1961).
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studied include the simple food chain,!3 the behavior of chromo-
somes at crossover, !4 and the co-existence of two animal species. 13
The teaching scheme for this last computer model illustrates the
method of controlled change in one variable.

After studying populations, e.g., in a jam jar, the program is
used in on-line mode and the biology pupil is first asked to choose
several values for the number of offspring per generation and then
for the generation time. From the calculated results he can see the
corresponding changes in growth pattern for a typical population of
a single species. He now has a background from which he can dis-
cuss two of the scientific aspects of control of population in a social
environment. Returning to the computer program, he can investigate
the model to find the predicted effect of starting with different num-
bers of animals. There is then a sequence of investigations of the
interactions between two species. It is expected that the teacher will
relate the results to recorded examples of co-existence or extinction,
and that the pupil will be able to see that a realistic study of a habitat
can be made by synthesis.

As well as the strategy for problem solving, there is a lot of ex-
plicit mathematics in this model which could be brought out by a dif-
ferent teaching scheme. Four which might be used with mathematics
pupils are: (1) linear or non-linear relations between variables; (2)
convergence of a series, and its dependence on terms in the series;
(3) difference and differential equations; and (4) perturbations (after
co-existence one species is depleted by human interference, what
then happens?).

Pupils are often prepared to accept that the laws of nature contain
integral powers of the variables. The computer allows them to de-
cide whether the integer is there to make calculations simple or to
provide the most accurate model. For example, in a program con-

taining the generalised model F ai, the pupil can be allowed to

choose n = 2 (the familiar inverse square law) or other values.
Bennett et al.,16 consider this as a model for Geiger and Marsden’s

13Regional Centre for Computer Education, Dundee College of Education, Park
Place, Dundee, Scotland.

l"’Advisory Unit for Computer Based Education, 19 St. Albans Road, Hatfield,
Hertfordshire.

15Computers in the Curriculum. Schools Council Project, Chelsea College,
Bridges Place, London SW6.

IGBennen, J. W,; Bignall, B. G.; and Bradley, R. A. “Some Uses for a Digital
Computer in an A Level Physics Course.” Physics Education, 7.3 (May 1972),
155-157.
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alpha particle scattering experiment. They show that small variations
in n produce significantly different results.

One change brought in with new syllabuses is the increased
awareness and acceptance of different ways of solving problems.
The teacher or pupil who writes computer programs can hardly fail
to realise that there are alternative strategies, for his companions will
have said “Why not do it this way?” The crunch comes when one or
more programs have been written (i.e., models have been con-
structed), for we cannot find out whether any provide a solution to
the problem until we clarify what we mean by a solution. I suggest
there are three classes of problem: (1) If the problem has an analyti-
cal solution, as for example with certain integrals, then we may de-
fine a solution as ‘for every example tested, it has provided the nu-
merical answer which is equal to the analytical answer when the lat-
ter is rounded to six significant figures;’ (2) if the problem is based
on experimental observations, some statistical analysis (see next
section) is required within the definition of a solution, but it may be
valuable to compare parts of two models. Bennett et al.,16 provide
thought for both mathematicians and physicists by comparing

e LU
tan (#)andsm ( 1 )

as alternative models to predict the angle of refraction; and (3) if the
problem can only produce a prediction, possibly using a stochastic
model, the decision as to whether it is a solution may be as uncertain
as with the Club of Rome/MIT predicament of mankind.

Experimental Results, Mathematics and Computing

“If in a mathematics lesson the pupil is dealing, for example,

with the function x = I/x, he will be dealing with this precisely,
with no ‘noise’ in the system. . . . In science, by contrast, the re-
sults of school experiments are noisy, sometimes even deafening;
the data contain errors, which make the inference of relations be-
tween variables much harder.”!” The gap exemplified by this quota-
tion is being narrowed by developments in each discipline, mainly

17Ma!pas. A. J. “Mathematical Interpretation of Experimental Data in
Schools.” International Journal of Mathematical Education in Science and
Technology, 4 (1973), 263-270.




independently of the others. Teachers need to come close enough to
communicate, and maybe share a computer.

The now-common slide rule, with its logarithmic scale, makes it
easier to use logarithmic graph paper for analysing the results of ex-
periments. Let mathematics and science pupils plot familiar func-
tions using different graph papers or scales. When they try to draw
smooth, continuous curves they will appreciate the apparent distor-
tions. Then provide them with sets of results of experiments where
the relations are unknown and guide them in finding the relations. In
mathematics classes they may have seen the advantage of combining
all their sets of data, and if this was done with the results of a
science experiment the pupils might find it easier to “draw a straight
line through” the non-linear points. The statistics taught to school
pupils has often omitted explicit mention of fitting a curve to a set of
points by the least-squares method, but it is a standard computer li-
brary program and the principle can easily be understood. The
science pupil may huve one or two rogue points within his results;
do they significantly alter the curve or line calculated by the com-
puter?

In the language of numerical methods, the rogue points men-
tioned above are ‘mistakes’ which the pupil may be able to identify
and subsequently correct by repeating part of the experiment.
Numerical methods also quantify ‘errors,” and here mathematics and
science are drawn closer together. In an experiment data may have
zero error, such as the number of objects (i.e., an integer); data may
have a known non-zero maximum error (e.g., 0.5 umts), or data
may have an estimated maximum error. This last is obtained by
combining the errors of the dependent variables. If a mathematician
plotted the results making allowance for the errors he might get
Figure 4 instead of Figure 3. Instead of drawing a curve to pass near
the points in Figure 3, he would draw a curve to intersect the line
segments in Figure 4 (or the areas if variable 2 also had non-zero er-
TOT).

A difficulty with sampling methods on a biology field course is
that time spent on the mathematics might otherwise be spent on biol-
ogy, and there is one London school where data from a field course
were analysed using a computer. Another scheme in which I have
taken part is for mathematicians and scientists to combine for a field
course, each contributing to, and learning from, the rest of the
group, but it can be difficult to plan this to meet the needs of each
discipline.
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Conclusion

The work done in Britain has highlighted the following difficul-
ties in making computer library programs into a resource for mathe-
matics and science teachers:

1. Programs and accompanying texts: These must be devised, pro-
duced, tested and distributed. It is too big a job for the average
teacher, but national developments have now begun.

2. The teaching scheme: There is no accepted way of integrating
computing to benefit one or several subjects.

3. Teacher training: Is the ‘infiltration method’ going to be success-
ful and is there a better method?

4. Machine compatibility: The design and writing of programs
should enable them to be transferred easily to other educational
computers.!8

18Lewis, R., and Dean, P. G. “The Design and Writing of Programs.” Project
Paper 4, Computers in the Curriculum, Chelsea College, Bridges Place, London
SW6 (November 1973).
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Models, Modeling and the
Teaching of Science and
Mathematics

David H. Ost
Auburn University
(Vol. LXXXVII No.5 May 1987)

One of the most prominent features of modern science is the
model. Modern developments in mathematics and in computer
science have made available new analytical models which have re-
sulted in a revolution of modeling as part of the scientific method.

A successful model assumes attributes which last far beyond the
problem-definition stage or its use in specific research. The model
may become the dominating paradigm in the field, not only in the
sense of directing scientific inquiry but in the way the student and
the public think about the issue. The Watson-Crick model of DNA
has been the research paradigm for molecular biology for nearly
three decades. And the students of biology during the same period
have come to think of DNA as stick-balls and paper cut-outs of nu-
cleotide bases.

Because of the nature of models, the teacher of science or math-
ematics must be alert, since students are easily seduced. Students
need constant reinforcement of the fact that it is reality, the phe-
nomenon, which is the focus of study. The model is the tool and
modeling a process. It is important in science and mathematics
teaching to clearly differentiate between a given model and the reality
it depicts.

There are four basic kinds of models found in contemporary
science which have direct applications in the teaching of science and
mathematics. Some are more useful than others.

193




Representative Models

Representative models, as the name implies, are partial facsimi-
les of nature. Examples range from plastic representations of cells
and tissues to stick-balls to assemble molecules to simulation exer-
cises using computers. They can be extremely valuable for commu-
nicating descriptive information as well as for constructing hypothe-
ses.

The most common feature of representative models is that they
are done to scale or include some aspect of scaling. Maps, whether
mathematical projections or not, are so closely allied to experience
and to photographs that this type of model is frequently underesti-
mated. The fact that the map represents reality is readily apparent to
anyone who can “read” maps. In a sense the map model has become
a sophisticated language all its own. Witness, if you will, satellite
weather tracking or the analysis of features on a distant planet.

Scale models are generally constructed on reduced and/or pro-
portional scale. A scale model of a bridge might be built to obtain
numerous kinds of data such as stress, tension, approach roads, etc.
Precisely developed, the representative scale model is a useful tool
for solving real problems without the enormous expense and in-
vestment of trial and error. Natural processes which may not be
fully understood can be somewhat duplicated or replicated through
models.

Just as a wind tunnel can be used to model a host of environ-
mental conditions on a scale smaller than nature, so too can scale
models be used for teaching. Models of river channels, air or fluid
movements, and other natural conditions can be used to determine
the effects of modifications and human interventions such as dams,
changes in humidity, pollution, etc. Variables can be manipulated
and tests which produce useful data can be run. Unfortunately, in
teaching this type of model is used primarily to demonstrate how
(e.g. how sedimentation accumulates or how nucleotide bases pair
in DNA) or to communicate ideas (e.g.,. proportionality, construc-
tion of time lines, distance in space, or the special relationship of the
particles of the atom.) It would seem that representative models are
not being used to their full potential.

Analogue Models
Analogue models compare two things which are in some sense
similar and is some sense different. The flow of energy in an

ecosystem is sometimes modeled as a hydraulic flow system. The
two systems have various attributes in common. Through careful
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study the researcher or the student may realize that ecosystems have
a property in common with the hydraulic system which was never
anticipated. In this way, the analogue model can lead students as
well as scientists to a discovery.

Note that this use of the model demands little of the model itself.
In this sense, the analogue modei has little experimental value. For
instance, the chemist Kekule is reported to have discovered the na-
ture of the benzene ring from dreaming that a snake swallowed its
tail. Clearly no herpetologist would accept the truth of the tail-swal-
lowing notion, and no one would accept this type of model as evi-
dence for fact. Nevertheless, it was an analogue model which pro-
vided Kekule the direction to search for his discovery.

Although some data may be gleaned from using the analogue
model, the primary purpose of the analogue is to identify and relate
variables in the beginning stages of problem form.lation. Perhaps
one of the best classic examples of this was the work of Charles
Darwin. In his support of the theory of natural select.. ., he brought
forth artificial selection. His analogue model went something like
this: in the protected environment of the farm, breeders select adult
forms to reproduce; in a natural environment, the: selection of which
adult forms reproduce is determined by nature.

Darwin used the analogue model as a justification. The two sys-
tems were different but similar enough to form the basis of a logical
premise. His contemporary critics attacked this premise on the basis
that the analogy was inappropriate. This argument is still voiced to-
day, illustrating the limitation of the analogue model in supporting
scientific concepts.

Logical Models

In a sense, the logical model describes reality as it “ought” to be,
not as it “is.” In teaching, the logical model may be used to explore
the interrelationships among science, technology and society (S-T-
S). Discussions of the problem of acid rain require consideration of
economics and political science. Oughr issues emerge just as they
might in exploration of knowledge of human genetics and abortion
decisions. The ought to problem is easily seen in computer simula-
tions of the Three Mile Island nuclear power situation or in energy
consumption in general. It is in this way that the teacher can relate
technology or the advance of scientific knowledge to cultural ethics
and belief systems.

The focus of the logical model is on particular sets of ideas
which have been generated to satisfy pre-established axioms and
theorems. There is no way scientific data can be gathered or hy-
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potheses tested by using these models since the situation being
modeled is based on philosophical positions or on hypothetical sit-
uations,

Theoretical Models

The most useful types of models in science and mathematics are
mental constructions invented to account for observed phenomena.
Although theoretical models are analogical in origin (e.g.,. simula-
tion), they are formal in their use. They have a correspondence with
reality. The implicit or explicit attributes of the model are closely tied
to ideas, facts, or theories which are well documented or familiar.

In theoretical models the physical systems are represented math-
ematically. In the classic model of gas, interrelationships of mass,
velocity, energy, etc., are illustrated by equations. Although none of
these attributes is observable, calculations originally derived from an
analogue model (the billiard-balls model) provide evidence that the
primary system has the suspected properties. The model can be the
basis for expanding theory or for developing prediction. In the case
of the analogue billiard-balls model, it was extended to develop the
van der Waal’s equation.

A theoretical model may be the first step in the development of a
representative model. In teaching, for example, mathematical formu-
las or theoretical models of electrical resistance can be readily trans-
formed into physical (representative) models of circuits. If students
trace the development of a model, insight will not only be gained
into the concept but into the ways knowledge is generated.

Theoretical models are rich sources of information and ideas
which have allowed science to go far beyond the simple cause and
effect mechanisms implicit in representative models. The concepts of
feed-back and adaptation, when worked into a model, allow the
modeling of change, particularly change requiring large amounts of
time.

Models and Methodology in Science and Mathematics

There is an increasing number of modeling skills which are not
directly tied to science but which could be incorporated as part of the
methodology of scientific inquiry. The fields of statistics and com-
puter science are rapidly developing new tools. The skills, zools,
and models which result could provide new insight into sampling
schemes, classificatory devices, multivariate analysis, and the de-
sign of factorial experiments.
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Although it is possible that the majority of these new method-
ologies may remain outside of science or mathematics as technique,
they could just as well become integrated components of the inquiry
structure. Generations ago a lens grinder provided biology and as-
tronomy with major tools of research. Microscopy has become part
of biology and the health sciences, the telescope part of astronomy.

The formulation of hypotheses, the design of investigations and
analyses are each determined by the available methodologies. As
biology went through a transition with the advent of the microscope,
the student of biology developed new skills and techniques. These
skills and techniques are now part of biology. We can expect models
and modeling to impact on science and mathematics in a similar
manner. The skills, corollary to modeling, will become part of cur-
riculum and instruction and enrich the student’s education. Lack of
skills in the new modeling methodologies will relegate students to
limited understanding of modern science and technology and thus
limit career opportunities.

Implications for Science and Mathematics Education

Models are not new to the classroom. Plastic representative
models of planetary systems, cells, reproductive systems, €tc., are
commonplace in the life and earth science classrooms. The physical
sciences have long used analogue and theoretical models to explain.
But even in these sciences the full potential of models has not been
developed in the classroom. The models are used as instructional
strategies. Models and modeling are part of the fabric of science; in-
struction in science and mathematics as well as the curriculum
should so reflect them.

Theoretical models are ideal for integrating science and mathe-
matics. A mathematical model of population growth can be readily
transformed into a mode! of population dynamics. Populations and
social systems can be modeled as equations. The variables which af-
fect population growth or gene changes can be illustrated mathemati-
cally. The effects of emigration, immigration, death and birth can be
quantified. Models and modeling can be used to develop skills of
explanation, interpretation, prediction and analysis. In general, theo-
retical models serve all the function of theory. They are a constant
source of plausible hypotheses and, as such, are basic tools in in-
quiry as well as the teaching of science and mathematics.

Theoretical models and modeling are inexpensive to use in the
classroom or laboratory. Perhaps one of the greatest values of the
computer is its availability as a sophisticated tool to work with data
and to develop important skills of modern scientific inquiry. The re-
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lationships among variables can be readily observed. Modeling is an
effective method to provide students with experiences in hypothesis
formulation and the design of investigations. Of course, the analysis
of the data can be readily accomplished through the use of the com-
puter if the study is properly designed. However, a major barrier is
the lack of needed quantitative skills on the part of the teacher as
well as the student.

Modeling is an ideal way to introduce decision-making as it is
used in S-T-S issues. An introduction to risk or uncertainty calcula-
tions drawn from probabilistic models is a natural part of decision-
making. Further, computer-based mathematical models are the main
theoretical model used for prediction. Students must learn that the
predictive value as well as decision-making is a direct function of the
quality of the data put into the model. Human values are not easily
introduced into any prediction equation.

As students develop the appropriate skills and expertise in
modeling, the importance of sensitivity analysis to validate models
will become clear. Individuals trained in the use of models in science
will understand their limitations. Individuals who receive no such
training will be overwhelmed by models in whatever field (science,
economics, management, etc.) they enter.

In addition to developing important skills for use in science, the
student trained in modeling will have gained an important general
education. Society is asking the student to develop technological lit-
eracy. Understanding models, knowing how to model, and recog-
nizing the use of the model in society are certainly part of such liter-
acy. Furthermore, models and modeling can be effective and effi-
cient ways to relate science and technology to society.

Some Thoughts on Drawbacks

Since the days of Faraday, the warning that there are problems
and dangers associated with models is recurrent in the scientific lit-
erature. This warning holds, too, for the teaching of science. In
general, models should be taken seriously but not literally. It must
be remembered that models are partial and inadequate ways of repre-
senting reality. Unless constantly reminded, students will lose sight
of the phenomena being modeled and focus solely on the model. For
some, the model becomes an intellectual barrier, a limiting factor in
their learning. An oversimplified representative model cannot ac-
commodate sophisticated information. Students must then unlearn
ideas tied to simple models before they can progress.

The result is that many individuals still picture the
gene/chromosome {xéelationship as snap-together beads. No matter
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how hard they try some students continue to think of an atom as a
miniature planetary system. The mental construction developed from
the model. The students did not synthesize the information; they
learned the model. -

Many times it is the teacher who forgets that the model is a
mental construction and not a picture of reality and neglects to point
out there is no direct correspondence of the model with reality.
Textbooks neglect to illustrate that a model is neither true nor false
but only more or less useful to picture whatever is being studied.
The power of the model is in the conceptual simplification. As a tool
of science it can foster the creative process. If modeling is consid-
ered as only a methodology, it can fossilize the intellect.

As with theory, the model evolves to be consistent with newly-
found phenomena. Personal commitment to specific models can be-
come intense, and literalism subsequently creeps in. As teachers de-
velop expertise in an area of science, they are subjected to a subver-
sive indoctrination in the models of the time. Although the model
continues to evolve in the science, the teacher’s knowledge of it very
likely will not. The teacher may unconsciously select materials that
are in harmony with a given model or magnify particular phenomena
to highlight conformity of the research with a specific paradigm.
Opposing scientific models, even though they may not accommodate
all data, must be considered if science and the student of science are
to maintain objectivity.

Furthermore, the teacher must be aware when reading popular-
ized literature that the author may be stressing data which support a
belief in a particular model. When a new model is brought forth to
explain data or phenomena, many researchers focus their work to
gather evidence in support of the model. The importance of falsify-
ing hypotheses (a la K. Popper) is frequently overlooked in the ea-
gerness to develop support for the model. At times it is even forgot-
ten that it is the deductions from the theory, to which models lead,
which must be tested and retested, not the model itself. If this is true
of professionals, it can be assumed that the student of science is
equally seduced.

Summary

Modeling is one of the most basic tools in the emerging infor-
mation society. Modern decision-making, at all levels, tends to be
based on modeling. The better the model, the better the decision.
The future citizen, whether a scientist or an office worker, should
understand not only the strengths and mechanisms of models but the
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limitations and pitfalls as well. The modeling process may be the
best way to develop this understanding.

The increasing use of the computer in all facets of society will
result in greater dependence on models. The student who has
worked with models, has developed modeling skills (particularly
computer related), and understands their use as well as their limita-
tions will have an edge.
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Components of Success in
Mathematics and Science!

Peggy A. House
University of Minnesota
(Vol. LXXXVIII No.8 December, 1988)

It is indeed fitting that we should be gathered together at the begin-
ning of this school year to address the questions facing mathematics
and science teachers in the late twentieth century. It is particularly
fitting this year, 1987, because we are at a special vantage point for
looking both back at where we have been and forward to where we
must go.

Ogly a short time ago we observed the 200th anniversary of the
signing of the United States Constitution. We were given a renewed
sense of history that reminded us of the age and heritage of our na-
tion. Yet at the same time that organizers in Philadelphia and
Washington were making last-minute preparations for parades and
fireworks to celebrate the constitution, mothers in Billings and
Helena and Great Falls and throughout the country were unceremo-
niously sending eager, or perhaps apprehensive, young children off
to their first day of kindergarten. The connection between these two
events may seem remote, but those kindergarteners represent the
high schoo! graduation class of the year 2000. It is these children,
already in our classrooms, who will lead us not only into a new
century but into a new millennium and toward the tricentennial. It is
for their sake that we consider the question of how to prepare them
to be effective citizens of a technological world about which most of
us can only dreami today.

It has long been the case, whether we like it or not, that the best
metaphor for education has been the pendulum. If you close your

1Keynote address o the School Science and Mathematics Association and the
Montana Council of Teachers of Mathematics, Billings, MT, October 1987.
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eyes and visualize a pendulum in motion, you see that it swings
back and forth between two extremes. It moves fastest through the
middle part of its path, slowing as it approaches one end where it
must momentarily come to a stop before gaining momentum in the
opposite direction. As it oscillates in one direction, forces are con-
stantly at work exerting pressure to change the direction and speed
of the swing. From time to time an outside event will occur that
suddenly accelerates the swing in a new arc or a new direction,
sometimes with the result that the motion runs wild and uncontrolled
to an extreme.

On October 4, 1987, we observed the thirtieth anniversary of
such an event: the launching of the Russian Sputnik. That occur-
rence shattered our national ego and created an outbreak of doubt
and criticism of our technological strength. It was further accompa-
nied by widespread public awareness of, and concern for, the edu-
cational process, especially in science and mathematics as these re-
lated to our competitive position in world affairs. It also was fol-
lowed by a major infusion of public and private dollars in support of
the reform efforts.

What resulted then were the movements we came to call “new
math” and “new science.” That was a case where educators, con-
cerned with the perceived lack of ability of large numbers of stu-
dents and graduates, attempted to find a solution through curriculum
reform. The movement took life in the “alphabet soup” curricula of
the 1950’s and 60’s which gave us SMSG and PSSC and BSCS
and UICSM and a litany of other projects.

For a little over a decade, those activities flourished. Curricula
were wriiten; new textbooks were purchased; and large numbers of
teachers spent their summers at NSF institutes on university cam-
puses across the country. Americans landed successfully on the
moon, and the country seemed to heave a collective sigh of relief
that the race had been won and we could relax.

At the same time, national attention was being diverted away
from the Soviets and the space race and toward two new targets: the
war in Viet Nam and internal troubles at home, especially in our ci-
ties. Technology often was associated with the unpopular war ef-
fort, and it began to lose its mystique and allure. There was growing
concern for minorities and the disadvantaged who were not well-
served by the college-preparatory curricula of the new math and new
science. Events like Watergate contributed to a growing demand for
accountability which, in education, took the form of minimum
essentials or basic skills testing. The educational pendulum had be-
gun its swing to the opposite extreme in what we would come to
know as “back to the basics.”
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In both mathematics and science, the emphasis during the back-
to-the-basics era of the 1970s was on the acquisition of information
and the development of algorithmic skill. Scores on standardized
tests were taken as the measure of success, and every school system
in the country set for itself the impossible goal of becormng like
Lake Woebegone where “all the children are above average.” At the
same time that developments in technology were making the hand-
held calculator and the microcomputer commonplace and inexpen-
sive, teachers were directing most of their energies to making sure
that children could behave like a calculator, producing rote answers
to low-level questions with little regard for thinking or conceptual
understanding.

What eventually brought an end to the back-to-the-basics cycle
were results such as those of the National Assessment of
Educational Progress that showed that children at all of the tested
age levels could calculate with a reasonably high level of profi-
ciency. Unfortunately, the same could not be said for the higher
level thinking skills needed for problem solving, or even for what
we might call the “middle level” skills of knowing when to perform
computations and with what numbers. The assessment also revealed
that students spend a large portion of their time watching and listen-
ing to the teacher, and working alone, probably doing texthook as-
signments. Other studies showed that, across the country and almost
without exception, the routine in classes, day after day after day,
was to correct the homework, do a few examples on the board. then
start the new homework. Mathematics and science classes were
found to embody little of the spirit of inquiry, expleration, labora-
tory investigation or individualization required for problem solving,
and the adjectives most frequently applied, especially to mathematics
classes, were dull and boring.

Then, as has happened before, certain events, this time the pub-
lication of several national reports beginning in the early 1980s,
gave a push to the school pendulum and hurled education back into
national attention, putting us once again under public scrutiny for
our teaching practices and outcomes. This time, however, the arena
is not only technological, it is economic as well. Americans have be-
gun to recognize that we are being edged out of world markets by
nations we once took for granted, notably Japan, and recently-pub-
lished international comparisons of educational achievement have
shown the United States to be mediocre at best when compared to
other countries.

On this last point, an explanation is in order because it touches
all of us in our mathematics and science classrooms. It should be
noted that our very best American students compete favorably with
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the best students worldwide. The troublesome fact is that the vast
majority of students in Japan or the Soviet Union far outperform
their counterparts here. It is this discrepancy in the performance of
the majority of students that should alarm us.

Futurists tell us that the twenty-first century world will be char-
acterized, above all else, by exponential growth and ever-accelerat-
ing change; by a society built on information technology rather than
on industrial systems; by connectedness within the world commu-
nity; and by a myriad of new realities and new problems only
vaguely imagined today. The children we educate for life in that
world will need new coping skills if they are to live as productive
citizens. The writers of an important 1983 report by the National
Science Board entitled Educating Americans for the 21st Century
(1983, p. v) saw the task as unequivocal. They wrote:

We must return to basics, but the “basics” of the 21st century
are not only reading, writing and arithmetic. They include
communication and higher order problem solving skills, and
scientific and technological literacy -- the thinking tools that
allow us to understand the technological world around us.

These new basics are needed by all students -- not only tomor-
row's scientists -- not only the talented and fortunate -- not
only the few for whom excellence is a social and economic tra-
dition. All students need a firm grounding in mathematics,
Science and technology.

But a truth that frequently eludes those who make a profession
within either science or mathematics is that both disciplines have
come to be viewed as the province, not of the masses, but of an in-
tellectual elite. For most people, science and mathematics beyond the
most rudimentary levels are the pursuits of a gifted minority. Both
disciplines also have been accused of focusing primarily on the
transmission of factual information or on what Alfred North
Whitehead (1929, p. 13) termed “inert ideas” -- i.e.,. ideas that are
received without being utilized, tested or thrown into fresh combina-
tion. Such learning results in the possession of knowledge, but
rarely in the use of knowledge.

At the same time, we are told that scientific and technological
knowledge currently increases by 13 percent per year, thus doubling
every 5.5 years, and that the rate is expected soon to jump to 40 per-
cent per year -- a doubling time of 20 months (Naisbitt, 1984, p.
16). Clearly an education built on the transmission of information is
impossible. What is urgently needed is an education focused on the
use of knowledge in new and yet unanticipated situations, and use,
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not by a select few, but by everybody. Mathematicians call it prob-
lem solving. Scientists call it inquiry. The message is the same.
Indeed, Whitehead (1929, p. 16) gave as the very definition of edu-
cation that education is “the acquisition of the art of the utilization of
knowledge.”

What, then, shall we expect of an education designed to enable
our students -- all of them -- to cope successfully with the twenty-
first century? To attempt to answer that question, I want to suggest
for your consideration what I believe are important components of
success both for pupils and for teachers. I hope you will give some
time throughout the year to exploring these ideas further and to de-
veloping strategies that will help you transform your classrooms into
learning environments filled with successes for your students and
for yourselves. Let’s begin by spelling out success on the part of
students.

Components of SUCCESS for Students

elf-confidence
nderstanding
ompetence
ommunication
nthusiasm
ignificance
ticktoitiveness

7377 To Yo Yol )

Self-Confidence

The first component is, I believe, self-confidence. This is an im-
portant starting point because without self-confidence and a positive
self-concept our best efforts to educate students can still meet with
failure and frustration. Students must believe they can learn mathe-
matics and science or they never will.

Sometimes it is hard for those of us who chose mathematics and
science as our major fields to grasp the sense of helplessness that
many people experience in these areas. But a negative self-concept
can be so serious an impediment that it can totally prevent learning.
Each of us can undoubtedly identify some area where we feel in-
competent. Perhaps it is art or music or athletics. For me it has al-
ways been music. [ have been the victim of a long string of teachers,
from early elementary grades through college, who have done to me
all the things that I am sure music teachers are taught never to do.
But they long ago succeeded in convincing me that I cannot sing,
and, sure enough, I can’t. Although, when I am safely alone in my
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car with the windows up, I will turn on the radio or tape recorder
and sing my heart out, I cannot and will not attempt to do so in pub-
lic. My self-concept in this matter has totally prevented me from ever
attaining success. Such is also the case for many students when it
comes, not to music, but to mathematics and science.

The starting point for all of us who teach mathematics and
science will be to convince all students that, to some appropriate de-
gree, these subjects are for them. (I say “some appropriate degree”
because I do not expect all students to specialize in science or math-
ematics, but I do expect all students to attain a functional level of
mathematical and scientific competence.)

A special comment is in order here. All of us who teach mathe-
matics, and many who teach science, especially physics, know what
it is like to meet a total stranger who, on finding out what we do,
immediately lets us know that “I can’t do math!” or “Yuk! Math! My
worst subject” or some equivalent exclamation. This is symptomatic
of a serious problem related to self-concept, namely the acceptance
that it is okay to be mathematically incompetent. It is NOT okay, and
we must make a conscious effort to combat that idea.

Understanding

My next component is understanding. The ability to “‘do” math-
ematics or science, as we traditionally expect students to do them in
school, is not a measure of understanding. When students truly un-
derstand our subjects they internalize the concepts and principles on
which the subject is based; they think in the discipline; they differen-
tiate between the reasonable and the unreasonable, the relevant and
the irrelevant; they take ideas learned in one way and view them
from different perspectives or combine them in new ways. They are
able to use knowledge, not just repeat it.

Let us be sure we are clear on one important point here: facility
with computation or algebraic manipulation, or quick recall of facts
and formulas, is neither a necessary predictor nor a sufficient mea-
sure of understanding.

This discussior always reminds me of two chemistry teachers
with whom I worked on separate occasions in the past. The first in-
sisted that a student simply did not know chemistry unless he had
committed to memory the names, symbols, atomic numbers, va-
lences and atomic weights of all the elements in the periodic table.
The second teacher, by contrast, ran a very active laboratory class-
room in which he had permanently mounted on each of the four
walls large posters of the periodic table that could easily be read
from anywhere in the room. These two men personified the differ-




ence between transmitters of information and stimulators of useful
knowledge. Only the latter will be able to fulfill the challenges of the
future.

Competence

Successful students must be competent in all of the basic skills
of the technological society. Ten years ago, the National Council of
Supervisors of Mathematics gave us an expanded definition of
“basic skills” by insisting that these included not just computation or
arithmetic but also problem solving and alertness to the reasonable-
ness of results and estimation and the ability to interpret tables,
charts and graphs, and using mathematics to predict, and more. The
new basics of our age also include facility in analyzing and interpret-
ing quantitative situations, in generating models, in designing algo-
rithms, in planning and carrying out solutions, in evaluating and
verifying results. These are the components of problem solving and
higher-order thinking which mathematics and science educators
espouse; they are not easily measured with paper and pencil tests.
But if we are not stressing these outcomes in our classrooms, we are
not preparing students with the competence they will need for future
success.

Communication

Communication refers to the ability to read, write, speak, think,
demonstrate, and persuade with meaning and understandin g.
Students must learn to communicate ideas clearly and concisely both
with the specialist and with the layman. Mathematics is itself a lan-
guage, precise and specialized, with a unique symbol system that
condenses vast ideas to a dense, concise representation. It is also the
language in which most great scientific ideas are encoded. Students
must learn to communicate in that language as well as in correct, flu-
ent, effective English. We should expect no less of them because we
teach science or mathematics. This is a point en which I am very
intolerant, and I have pounded on many a podium insisting that
mathematics is not a license for illiteracy.

During the basic skills years we heard frequent laments that
“Johnny can’t read,” and publishers responded, especially in math-
ematics texts, by draining them of language, leaving little more than
facts and rules stated in the simplest of terms. Such textbooks have
not yet disappeared from the market, so we must be vigilant in
guarding against them. Our students will never appreciate the rich-
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ness of our subjects unless they can communicate with us about
great ideas.

Enthusiasm

If science and mathematics are to become anything more than re-
quired drudgery, students must be enthusiastic about them. They
must feel a sense of ownership, a curiosity and drive to learn more.
Enthusiasm includes respect for science, mathematics and technol-
ogy; it involves a sense of potency with respect to one’s place in the
world; it means willingness to think creatively, to take risks, to
subject one’s ideas to scrutiny by others; to make decisions and ac-
cept their consequences. Enthusiasm leads us to anticipate new and
unimagined futures and to accept that we can help shape that future.
Enthusiasm is excitement about learning the subject, yet, as we saw
earlier, students find little to be excited about in typical classes. The
continuing challenge to each of us will be to kindle and then nurture
enthusiasm.

Significance

Perhaps the reason students are not more enthusiastic about
mathematics and science is that they do not perceive our subjects as
having significance for them. Too many students who have asked,
“Why do we need to learn this? What's it good for, anyway?” have
received the common but unimaginative answer that, “You’ll need it
next year in trigonometry or physics,” or “You’ll need it in college.”
Pages of drill or formulas have very little significance to a learner.

But we have today new tools that we never had before.
Technology in the form of calculators and microcomputers and
video disks allow us to present applications of science and mathe-
matics that are relevant, interesting and nontrivial. We must seri-
ously examine the way we use these tools, as well as the problems
we present, to assure that the significance of our subjects for our
students is not lost. We must, every day, help our students to see
the applications of mathematics and science all around them in their
own lives. Students need to learn how to view the world through
math-and-science-colored glasses. When they do they will begin to
transfer school learning to life beyond the classroom. They will be-
gin to develop an awareness of the interrelatedness of science, math-
ematics and technology with wider social issues, and they will learn
to understand and cope with the world in which we live.
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Sticktoitiveness

Finally, students will need perseverance or sticktoitivness, and
they will need it on more than one level.

On the immediate small-scale level, this means that students
must learn to stay on task and to grapple with important ideas or
hard problems. I see this as a difficulty for many students, espe-
cially our so-called “better students.” They, in particular, have come
to believe that what we expect of them is quick performance on low-
level tasks, and, indeed, they are very good at that. They are used to
getting the answer, to finishing the assignment quickly, and to
knowing that their answers are correct. But they come apart when
presented with problems that require them to think and struggle and
trust their own judgements and even risk being wrong. So they give
up on the problem or are easily distracted by other amusements.

The other level of sticktoitiveness is the long-range one: More
students will need more years of mathematics and science regardless
of their plans beyond high school. The world they live in will de-
mand that. But it also is the case that we must seriously examine the
kinds of courses we offer them.

In mathematics, for example, the traditional offerings beyond al-
gebra and geometry have always been designed to prepare students
for the calculus. But those who plan to study in fields like business,
economics, sociology, political science, psychology and the like
need, not calculus, but probability, statistics, matrix algebra, finite
mathematics, gi “ph theory, and related topics. Likewise, not all stu-
dents need engineering physics, but all do need a solid grounding in
the principles of physical and life science.

The bottom line is that we cannot allow students to end their
study of mathematics and science in the ninth or tenth grade. But, at
the same time, we must have more to offer them than boriehead

arithmetic and Sandbox IL

And this leads me quite naturally to teachers. Education is a
partnership, and we won’t develop successful students without also
developing successful teachers. So let us ask ourselves how we will
recognize success in teachers.




Components of SUCCESS for Teachers

tudent-centeredness
rgency

ommitment
reativity

Xpectation

urprise
elf-direction

vwumAaacy

Student-Centeredness

We will know them first because they are student-centered. This
is a dimension on which mathematics and science teachers have not
always received the highest marks. Many of us intimidate our stu-
dents because they see us as “real smart” and as talking a language
they can’t possibly understand.

But student-centered teachers understand those apprehensions.
They have empathy and patience; they find ways to make the subject
relevant to students. This means more than being an expert in the
subject yourself; it means knowing it so well that you can make it
understandable to a child.

Urgency

The successful teacher also exhibits a sense of urgency or mis-
sion that convinces students that what we teach is vitally important
for them. Out of our urgency is born their sense of excitement about
learning. Teachers who have lost, or who failed to develop, a sense
of urgency about teaching are the ones who have begun on-the-job
retirement. Uninspired teaching lulls students into complacency or
alienates them altogether. Teachers without a mission are unhappy
people who can do little to benefit either themselves or their stu-
dents.

Teachers can do much to encourage and support one another and
thereby to stimulate their sense of mission or urgency. In this regard
I give you the same advice I give my students who are preparing ¢
become teachers: align yourselves with colleagues who are profes-
sionally alive and excited about their teaching -- whatever the subject
-- because they are the ones most likely to keep you alive and ex-
cited.




Commitment

Urgency leads to commitment, and commitment is the hallmark
of successful teaches. It is also a quality that seems to have eroded
seriously in recent years.

As a teacher educator, absolutely the most difficult part of my
job is seeing my eager undergraduate students return from the
schools where they have their practicum and student teaching field
experiences and listening to their horror stories about the things
teachers tell them about teaching: “Don’t do it! You’re making a big
mistake!” “Get out while you can before it’s too late . . .”

How will we replace the present cadre of teachers, a majority of
whom will retire or leave teaching in the near future, when teachers
themselves do not take pride in and are not committed to what they
do?

Each summer I teach in a program for gifted high school mathe-
matics and science students from throughout the state of Michigan.
During the institute I have an opportunity to talk to them about
teaching. I try to impress upon these extremely talented young peo-
ple that teaching is a good and honorable profession, that when the
alarm rings in the morning I like to get up and go 10 work, and that
we hope many of them will join us in this vocation. But I am always
left to wonder what their teachers back home say and do to give
credibility to the things I tell them.

Creativity

Creativity goes hand-in-hand with all the other characteristics.
There is nothing creative about reading answers to yesterday’s
homework, doing a few examples on the board, then assigning
more homework. But it takes considerable creativity to use time and
space effectively, to assure that every minute in your classroom is
used productively to engage the students in your subject. It takes
creativity to find interesting problems and relevant applications; to
prepare effective demonstrations and hands-on experiences; to ask
stimulating, thought-provoking questions; to unfetter yourself from
the textbook and do what you believe will be best for your students.

Creative people are curious. They are risk takers. They are
sometimes unconventional. Creative teachers capture the attention of
their students; they conduct stimulating and productive classes that
students want to attend and are afraid to miss.

No
-
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Expectations

Successful teachers also have high expectations for themselves
and for their students. Students resonate to the self-fulfilling
prophecy of teachers’ expectations. When we expect students to be
stupid or bored or rowdy, they seldom let us down. But when we
expect them to be competent, to accept responsibility, to perform ac-
cording to their true abilities, they usually come through for us if
they recognize that our expectations are grounded in respect and
trust. Obviously, I do not expect a six-year-old to master trigonome-
try or chemistry, but I do expect students to perform tasks appro-
priate to their age and grade. I also expect them to do more than they
think they can, and I expect to provide them with support and guid-
ance and help to make sure that they succeed.

Surprise

Like a young child discovering the world, I believe teachers
must never lose a sense of wonder and surprise about their subjects.
For example, when I read the mathematical writings of Martin
Gardner, I come away with renewed awe and wonder and surprise
about mathematics. I have a similar experience when I study the
hisiory of science.

One way to cultivate this wonder is through problem solving or
laboratory research of your own. I don’t mean working out the an-
swer key for your class or running through the experiment before
the students do it; I mean real investigation of your own discipline in
an area that is new to you.

In this regard, mathematics and science teachers often differ
sharply from teachers of other subjects. When I think about art
teachers that I know, I find that they do ar: for their own pleasure
and development. They paint, do sculpture, make pottery, take
photographs, and the like. Similarly, the music teachers I know par-
ticipate in music outside of school. They sing in choirs, play instru-
ments, attend concerts. But I know precious few mathematics and
science teachers who do mathematics and science on their own just
for the enjoyment of it. Yet it is this personal involvement in the
subject that is the source of our deepest sense of surprise.

Self-Direction

Finally, the successful teacher is a self-directed professional. He
or she keeps abreast of the discipline and of issues in teaching that
discipline, not because further study wili lead to a lane change and a
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salary increment, but because the knowledge wil: make him or her a
better teacher. Self-directed teachers regularly read the professional
journals, attend professional conferences, serve on committees, take
leadership roles, give talks and workshops, share teaching ideas,
hold office in state and local professional organizations, participate
in curriculum development, mentor student teachers, and more. On
the national level, there are strong movements to restructure teaching
to recognize differences in teachers’ involvement in these activities.
Those who wish to attain the status of advanced career professionals
will have to become highly self-motivated and self-directed.

Conclusion

In a world where we must educate students to solve problems as
yet undreamed of, we can only hope to impart to them the germs of
the attitudes and abilities that may someday enable them to find
breakthrough sclutions. Our mathematics and science classrooms
can become the laboratories for this learning.

So to science and mathematics educators of the present falls the
challenge to begin to identify and explore the most powerful ideas of
the future. We shall face the grave task of assuring that education in
science and mathematics begins early and develops in a consistent,
coherent and purposeful manner under the stimulation of a com-
munity of educators who model the knowledge, abilities, attitudes
and commitment of persons in touch with their world and convinced
of their ability to make a difference in that world.

These are imperatives that must be taken seriously now. We can,
in truth, invent our future, but the time for invention is before the
future arrives. We know all too well that the future is approaching
with accelerating speed. Once it arrives, the best we shall be able to
do is react to it.

So my sincere wish for all of you is a wish for success. Your
students are depending on you. We all are depending on you. Please
do not let us down.
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